Skip to main content

Does Clock Precision Influence ZigBee’s Energy Consumptions?

  • Conference paper
Principles of Distributed Systems (OPODIS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4878))

Included in the following conference series:

Abstract

Wireless embedded sensor networks are predicted to provide attractive application possibilities in industry as well as at home. IEEE 802.15.4 and ZigBee are proposed as standards for such networks with a particular focus on pairing reliability with energy efficiency, while sacrificing high data rates.

IEEE 802.15.4 is configurable in many aspects, including the synchronicity of the communication, and the periodicity in which battery-powered sensors need to wake up to communicate. This paper develops a formal behavioral model for the energy implications of these options. The model is modularly specified using the language modest, which has an operational semantics mapping on stochastic timed automata. The latter are simulated using a variant of discrete-event simulation implemented in the tool Möbius. We obtain estimated energy consumptions of a number of possible communication scenarios in accordance with the standards, and derive conclusions about the energy-optimal configuration of such networks. As a specific fine point, we investigate the effects of drifting clocks on the energy behavior of various application scenarios.

This work is supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CC2420 Product Information. Chipcon AS (2005), http://www.chipcon.com/index.cfm?kat_id=2&subkat_id=12&dok_id=115

  2. IEEE 802.15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (2003)

    Google Scholar 

  3. ZigBee Specification Version 1.0. ZigBee Alliance (2004), http://www.zigbee.org/en/spec_download/download_request.asp

  4. MoDeST Tutorial: development of a complex model in MoDeST. Dependable Systems and Software, Saarland University, Germany (2006), http://depend.cs.uni-sb.de/modesttutorial/index.html

  5. The network simulator – ns-2 website (2007), http://www.isi.edu/nsnam/ns/

  6. Andel, T.R., Yasinac, A.: On the credibility of Manet simulations. IEEE Computer 39(7), 48–54 (2006)

    Google Scholar 

  7. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal – a tool suite for automatic verification of real-time systems. In: Hybrid Systems III, pp. 232–243. Springer, Heidelberg (1995)

    Google Scholar 

  8. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MoDeST: A compositional modeling formalism for hard and softly timed systems. IEEE Trans. Soft. Eng. 32(10), 812–830 (2006)

    Article  Google Scholar 

  9. Bohnenkamp, H.C., Gorter, J., Guidi, J., Katoen, J.-P.: Are you still there? - A lightweight algorithm to monitor node presence in self-configuring networks. In: DSN 2005, pp. 704–709. IEEE CS Press, Los Alamitos (2005)

    Google Scholar 

  10. Bohnenkamp, H.C., Hermanns, H., Klaren, R., Mader, A., Usenko, Y.S.: Synthesis and stochastic assessment of schedules for lacquer production. In: QEST 2004, pp. 28–37. IEEE CS Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  11. Bougard, B., Catthoor, F., Daly, D.C., Chandrakasan, A., Dehaene, W.: Energy efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks: Modeling and improvement perspectives. In: DATE 2005, pp. 196–201. IEEE CS Press, Los Alamitos (2005)

    Google Scholar 

  12. Cadilhac, M., Hérault, T., Lassaigne, R., Peyronnet, S., Tixeuil, S.: Evaluating complex MAC protocols for sensor networks with APMC. Elect. Notes Theor. Comput. Sci. 185, 33–46 (2007)

    Article  Google Scholar 

  13. Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In: POMC 2002, pp. 38–43. ACM Press, New York (2002)

    Chapter  Google Scholar 

  14. Daly, D., Deavours, D.D., Doyle, J.M., Webster, P.G., Sanders, W.H.: Möbius: An extensible tool for performance and dependability modeling. In: Haverkort, B., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 332–336. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Deavours, D.D., Sanders, W.H.: An efficient well-specified check. In: PNPM 1999, pp. 124–133. IEEE CS Press, Los Alamitos (1999)

    Google Scholar 

  16. Fruth, M.: Probabilistic model checking of contention resolution in the IEEE 802.15.4 low-rate wireless Personal Area Network protocol. In: ISoLA 2006 (2006)

    Google Scholar 

  17. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. EASST Newsletter 4, 13–24 (2001)

    Google Scholar 

  18. Hermanns, H., Jansen, D.N., Usenko, Y.S.: From StoCharts to MoDeST: a comparative reliability analysis of train radio communications. In: WOSP 2005, pp. 13–23. ACM Press, New York (2005)

    Chapter  Google Scholar 

  19. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Landsiedel, O., Wehrle, K., Götz, S.: Accurate prediction of power consumption in sensor networks. In: EmNetS-II, pp. 37–44 (2005)

    Google Scholar 

  21. Pongor, G.: OMNeT: Objective modular network testbed. In: MASCOTS 1993, pp. 323–326 (1993)

    Google Scholar 

  22. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: Scalable sensor network simulation with precise timing. In: IPSN 2005, pp. 477–482 (2005)

    Google Scholar 

  23. Zeng, X., Bagrodia, R., Gerla, M.: GloMoSim: A library for parallel simulation of large-scale wireless networks. In: WPDS 1998, pp. 154–161 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Tovar Philippas Tsigas Hacène Fouchal

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Groß, C., Hermanns, H., Pulungan, R. (2007). Does Clock Precision Influence ZigBee’s Energy Consumptions?. In: Tovar, E., Tsigas, P., Fouchal, H. (eds) Principles of Distributed Systems. OPODIS 2007. Lecture Notes in Computer Science, vol 4878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77096-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77096-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77095-4

  • Online ISBN: 978-3-540-77096-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics