Skip to main content

Vehicular Motion and Traffic Breakdown: Evaluation of Energy Balance

  • Conference paper
Traffic and Granular Flow ’07

Summary

Microscopic traffic models based on follow–the–leader behaviour are strongly asymmetrically interacting many–particle systems. The well–known Bando’s optimal velocity model includes the fact that (firstly) the driver is always looking forward interacting with the lead vehicle and (secondly) the car travels on the road always with friction. Due to these realistic assumptions the moving car needs petrol for the engine to compensate dissipation by rolling friction. We investigate the flux of mechanical energy to evaluate the energy balance out of the given nonlinear dynamical system of vehicular particles. In order to understand the traffic breakdown as transition from free flow to congested traffic we estimate the total energy per car at low and high densities and observe the energy of jam formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Schmelzer, G. Röpke, R. Mahnke: Aggregation Phenomena in Complex Systems, Wiley–VCH, Weinheim, 1999.

    MATH  Google Scholar 

  2. R. Mahnke, J. Kaupužs, I. Lubashevsky: Physics Reports 408, 1–130, 2005.

    Article  Google Scholar 

  3. D. Helbing: Rev. Mod. Phys. 73, 1067–1141, 2001.

    Article  Google Scholar 

  4. R. Mahnke, J. Kaupužs, J. Tolmacheva: Stochastic Description of Traffic Breakdown: Langevin Approach. In: Traffic and Granular Flow ’03 (Eds.: S. P. Hoogendoorn, S. Luding, P. H. L. Bovy, M. Schreckenberg, D. E. Wolf), Springer, Berlin, 2005, pp. 205–210.

    Chapter  Google Scholar 

  5. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama: Japan J. Indust. and Appl. Math. 11, 203, 1994; Phys. Rev. E 51, 1035, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shibata, Y. Sugiyama: J. Phys. I France 5, 1389, 1995.

    Article  Google Scholar 

  7. R. Mahnke, J. Kaupužs, J. Hinkel, H. Weber: Eur. Phys. J. B 57, 463, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cécile Appert-Rolland François Chevoir Philippe Gondret Sylvain Lassarre Jean-Patrick Lebacque Michael Schreckenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liebe, C., Mahnke, R., Kaupužs, J., Weber, H. (2009). Vehicular Motion and Traffic Breakdown: Evaluation of Energy Balance. In: Appert-Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, JP., Schreckenberg, M. (eds) Traffic and Granular Flow ’07. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77074-9_40

Download citation

Publish with us

Policies and ethics