Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4855))

Abstract

We consider scheduling problems in which a job consists of components of different types to be processed on m machines. Each machine is capable of processing components of a single type. Different components of a job are independent and can be processed in parallel on different machines. A job is considered as completed only when all its components have been completed. We study both completion time and flowtime aspects of such problems. We show both lowerbounds and upperbounds for the completion time problem. We first show that even the unweighted completion time with single release date is MAX-SNP hard. We give an approximation algorithm based on linear programming which has an approximation ratio of 3 for weighted completion time with multiple release dates. We give online algorithms for the weighted completion time which are constant factor competitive. For the flowtime, we give only lowerbounds in both the offline and online settings. We show that it is NP-hard to approximate flowtime within Ω(logm) in the offline setting. We show that no online algorithm for the flowtime can have a competitive ratio better than

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: A tool for performing parameterised simulations using distributed applications. In: Proceedings of the 4th IEEE Symposium on High Performance Distributed Computing, IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  2. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average weighted completion time with release dates. In: FOCS, pp. 32–44 (1999)

    Google Scholar 

  3. Awerbuch, B., Azar, Y., Leonardi, S., Regev, O.: Minimizing the flow time without migration. In: ACM Symposium on Theory of Computing (STOC), pp. 198–205 (1999)

    Google Scholar 

  4. Brixius, N., Linderoth, J., Goux, J.: Solving large quadratic assignment problems on computational grid. Mathematical Programming, Series B 91, 563–588 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakrabarti, S., Phillips, C., Schulz, A., Shmoys, D., Stein, C., Wein, J.: Improved scheduling algorithms for minsum criteria. In: Proc. of the 23rd Int. Colloquium on Automata, Languages and Programming, pp. 646–657 (1996)

    Google Scholar 

  6. Chen, Z., Hall, N.: Supply chain scheduling: Assembly systems. Technical report, The Ohio State University (2000)

    Google Scholar 

  7. Gandhi, R., Halldorsson, M., Kortsarz, G., Shachnai, H.: Improved results for data migration and open shop scheduling. In: Proc. of the 31st Int. Colloquium on Automata, Languages, and Programming, pp. 658–669 (2004)

    Google Scholar 

  8. Goux, J., Kulkarni, S., Linderoth, J., Yoder, M.: Master-worker: An enabling framework for applications on the computational grids. In: Proceedings of the 9th IEEE Symposium on High Performance Distributed Computing, pp. 43–50 (2000)

    Google Scholar 

  9. Hall, L., Schulz, A., Shmoys, D., Wein, J.: Scheduling to minimize average completion time: offline and online algorithms. Mathematics of Operations Research 22, 513–549 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoogeveen, H., Schuurman, P., Woeginger, G.: Non-approximability results for scheduling problems with minsum criteria. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 1412, pp. 353–362. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Leung, J., Li, H., Pindeo, M.: Multidisciplinery scheduling: Theory and Applications. chapter Order Scheduling Models: an overview, 37–56 (2005)

    Google Scholar 

  12. Linderoth, J., Wright, S.: Decomposition algorithms for stochastic programming on a computational grid. Computational Optimization and Applications 24, 207–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Queyranne, M.: Structure of a simple scheduling polyhedron. Mathematical Programming 58, 263–285 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Queyranne, M., Svirdenko, M.: New and improved algorithms for minsum shop scheduling. In: Symposium on Discrete Algorithms, pp. 871–878 (2000)

    Google Scholar 

  16. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: ACM Symposium on Theory of Computing (STOC), pp. 475–484 (1997)

    Google Scholar 

  17. Roemer, T.: A note on the complexity of the concurrent open shop problem. Journal of scheduling 9, 389–396 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schulz, A.: Scheduling to minimize total weighted completion time: Performance guarantees of lp-based heuristics and lower bounds. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  19. Wagneur, E., Sriskandarajah, C.: Open shops with jobs overlap. European Journal of Operations Research 71, 366–378 (1993)

    Article  MATH  Google Scholar 

  20. Wang, G., Cheng, T.: Customer order scheduling to minimize total weighted completion time. Omega 35, 623–626 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. Arvind Sanjiva Prasad

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garg, N., Kumar, A., Pandit, V. (2007). Order Scheduling Models: Hardness and Algorithms. In: Arvind, V., Prasad, S. (eds) FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2007. Lecture Notes in Computer Science, vol 4855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77050-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77050-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77049-7

  • Online ISBN: 978-3-540-77050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics