Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4855))

Abstract

Entanglement is a complexity measure of directed graphs that origins in fixed point theory. This measure has shown its use in designing efficient algorithms to verify logical properties of transition systems. We are interested in the problem of deciding whether a graph has entanglement at most k. As this measure is defined by means of games, game theoretic ideas naturally lead to design polynomial algorithms that, for fixed k, decide the problem. Known characterizations of directed graphs of entanglement at most 1 lead, for k = 1, to design even faster algorithms. In this paper we give two distinct characterizations of undirected graphs of entanglement at most 2. With these characterizations at hand, we present a linear time algorithm to decide whether an undirected graph has this property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berwanger, D., Grädel, E.: Entanglement—a measure for the complexity of directed graphs with applications to logic and games. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Berwanger, D.: Games and Logical Expressiveness. PhD thesis, RWTH Aachen (2005)

    Google Scholar 

  3. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Combin. Theory Ser. B 58(1), 22–33 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions: A survey. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 37–57. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Combin. Theory Ser. B 82(1), 138–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Safari, M.A.: d-width: a more natural measure for directed tree width. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 745–756. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Berwanger, D., Grädel, E., Lenzi, G.: On the variable hierarchy of the modal mu-calculus. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 352–366. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Berwanger, D., Lenzi, G.: The variable hierarchy of the μ-calculus is strict. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 97–109. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27(3), 333–354 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arnold, A., Niwiński, D.: Rudiments of μ-calculus. Studies in Logic and the Foundations of Mathematics, vol. 146. North-Holland Publishing Co, Amsterdam (2001)

    Google Scholar 

  12. Bloom, S.L., Ésik, Z.: Iteration theories. Springer, Berlin (1993)

    MATH  Google Scholar 

  13. Jamison, B., Olariu, S.: On the semi-perfect elimination. Adv. in Appl. Math. 9(3), 364–376 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chepoi, V., Dragan, F.: Finding a central vertex in an HHD-free graph. Discrete Appl. Math. 131(1), 93–111 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of theoretical computer science, vol. B, pp. 193–242. Elsevier, Amsterdam (1990)

    Google Scholar 

  16. Goubault, E., Raußen, M.: Dihomotopy as a tool in state space analysis. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 16–37. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Electrical Engineering and Computer Science Series. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. Arvind Sanjiva Prasad

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belkhir, W., Santocanale, L. (2007). Undirected Graphs of Entanglement 2. In: Arvind, V., Prasad, S. (eds) FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2007. Lecture Notes in Computer Science, vol 4855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77050-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77050-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77049-7

  • Online ISBN: 978-3-540-77050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics