Skip to main content

Biophysical Models of Neural Computation: Max and Tuning Circuits

  • Conference paper
Web Intelligence Meets Brain Informatics (WImBI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4845))

Included in the following conference series:

Abstract

Pooling under a softmax operation and Gaussian-like tuning in the form of a normalized dot-product were proposed as the key operations in a recent model of object recognition in the ventral stream of visual cortex. We investigate how these two operations might be implemented by plausible circuits of a few hundred neurons in cortex. We consider two different sets of circuits whose different properties may correspond to the conditions in visual and barrel cortices, respectively. They constitute a plausibility proof that stringent timing and accuracy constraints imposed by the neuroscience of object recognition can be satisfied with standard spiking and synaptic mechanisms. We provide simulations illustrating the performance of the circuits, and discuss the relevance of our work to neurophysiology as well as what bearing it may have on the search for maximum and tuning circuits in cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neurosci. 2, 1019–1025 (1999)

    Google Scholar 

  2. Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. AI Memo 2005-036 / CBCL Memo 259, MIT CSAIL and CBCL, Cambridge, MA (2005)

    Google Scholar 

  3. Gawne, T.J., Martin, J.M.: Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. J. Neurophys. 88, 1128–1135 (2002)

    Google Scholar 

  4. Lampl, I., Ferster, D., Poggio, T., Riesenhuber, M.: Intracellular measurements of spatial integration and the MAX operation in complex cells of the cat primary visual cortex. J. Neurophys 92, 2704–2713 (2004)

    Article  Google Scholar 

  5. Carandini, M., Heeger, D.J.: Summation and division by neurons in primate visual cortex. Science 264, 1333–1336 (1994)

    Article  Google Scholar 

  6. Chelazzi, L., Duncan, J., Miller, E.K., Desimone, R.: Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophys 80, 2918–2940 (1998)

    Google Scholar 

  7. Poggio, T., Reichardt, W., Hausen, W.: A neuronal circuitry for relative movement discrimination by the visual system of the fly. Network 68, 443–466 (1981)

    Google Scholar 

  8. Reichardt, W., Poggio, T., Hausen, K.: Figure-ground discrimination by relative movement in the visual system of the fly – II: Towards the neural circuitry. Biol. Cyb. 46, 1–30 (1983)

    Article  Google Scholar 

  9. Grossberg, S.: Contour enhancement, short term memory, and constancies in reverbarating neural networks. Studies in Applied Mathematics 52, 213–257 (1973)

    MathSciNet  Google Scholar 

  10. Abbott, L.F., Varela, J.A., Sen, K., Nelson, S.B.: Synaptic depression and cortical gain control. Science 275, 220–224 (1997)

    Article  Google Scholar 

  11. Yu, A.J., Giese, M.A., Poggio, T.: Biophysiologically plausible implementations of the maximum operation. Neural Comp. 14(12), 2857–2881 (2002)

    MATH  Google Scholar 

  12. Kouh, M., Poggio, T.: A canonical cortical circuit for gaussian-like and max-like operations (submission, 2007)

    Google Scholar 

  13. Hung, C., Kreiman, G., Poggio, T., DiCarlo, J.: Fast read-out of object identity from macaque inferior temporal cortex. Science 310, 863–866 (2005)

    Article  Google Scholar 

  14. Sclar, G., Maunsell, J.H., Lennie, P.: Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 30(1), 1–10 (1990)

    Article  Google Scholar 

  15. Lennie, P.: Single units and visual cortical organization. Perception 27, 889–935 (1998)

    Article  Google Scholar 

  16. Woolsey, T A, der Loos, H.V.: The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17(2), 205–242 (1970)

    Article  Google Scholar 

  17. Vogels, T.P., Abbott, L.F.: Signal propagation and logic gating in networks of integrate-and-fire neurons. J. Neurosci. 25(46), 10786–10795 (2005)

    Article  Google Scholar 

  18. Destexhe, A., Contreras, D.: Neuronal computations with stochastic network states. Science 314(5796), 85–90 (2006)

    Article  MathSciNet  Google Scholar 

  19. Poggio, T.: Stochastic linearization, central limit theorem and linearity in (nervous) “black-boxes”. In: Atti of III Congresso Nazionale di Cibernetica E Biofisica, pp. 349–358 (1975)

    Google Scholar 

  20. Douglas, R.J., Martin, K.A.C.: Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004)

    Article  Google Scholar 

  21. Moldakarimov, S., Rollenhagen, J.E., Olson, C.R., Chow, C.C.: Competitive dynamics in cortical responses to visual stimuli. J. Neurophys. 94(5), 3388–3396 (2005)

    Article  Google Scholar 

  22. Okun, M., Lampl, I.: Synchronized excitation and inhibition during spontaneous and evoked response in the barrel cortex. In: Computational and Systems Neuroscience, Salt Lake City, UT (2007)

    Google Scholar 

  23. Pinto, D.J., Brumberg, J.C., Simons, D.J.: Circuit dynamics and coding strategies in rodent somatosensory cortex. J. Neurophys. 83(3), 1158–1166 (2000)

    Google Scholar 

  24. Wehr, M., Zador, A.M.: Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426(6965), 442–446 (2003)

    Article  Google Scholar 

  25. Wilent, W.B., Contreras, D.: Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nature Neurosci. 8(10), 1364–1370 (2005)

    Google Scholar 

  26. Yoshimura, Y., Dantzker, J.L.M., Callaway, E.M.: Excitatory cortical neurons form fine-scale functional networks. Nature 433(7028), 868–873 (2005)

    Article  Google Scholar 

  27. Yoshimura, Y., Callaway, E.M.: Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neurosci. 8(11), 1552–1559 (2005)

    Google Scholar 

  28. Swadlow, H.A.: Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties. J. Neurophys. 62(1), 288–308 (1989)

    Google Scholar 

  29. Zhu, Y., Stornetta, R.L., Zhu, J.J.: Chandelier cells control excessive cortical excitation: characteristics of whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons. J. Neurosci. 24(22), 5101–5108 (2004)

    Article  Google Scholar 

  30. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Kinetic models of synaptic transmission. In: Segev, I., Koch, C. (eds.) Methods in Neuronal Modeling: From Ions to Networks, pp. 1–26. MIT Press, Cambridge (1998)

    Google Scholar 

  31. Hartline, H K, Ratliff, F.: Spatial summation of inhibitory influences in the eye of limulus, and the mutual interaction of receptor units. Journal of General Physiology 41(5), 1049–1066 (1957)

    Article  Google Scholar 

  32. Amari, S.-I., Arbib, M.A.: Competition and cooperation in neural nets. In: Metzler, J. (ed.) Systems Neuroscience, pp. 119–165. Academic Press, London (1977)

    Google Scholar 

  33. Hahnloser, R.H.R., Seung, H., Slotine, J.J.: Permitted and forbidden sets in symmetric threshold-linear networks. Neural Comp. 15 (2003)

    Google Scholar 

  34. Jin, D., Seung, H.: Fast computation with spikes in a recurrent neural network. Physical Review E 65 (2002)

    Google Scholar 

  35. Oster, M., Liu, S.C.: Spiking inputs to a winner-take-all network. In: Weiss, Y., Platt, B.S. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 1051–1058. MIT Press, Cambridge (2005)

    Google Scholar 

  36. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  37. Giese, M.A., Leopold, D.A.: Physiologically inspired model for the ecoding of face spaces. Neurocomputing, 65–66 (2005)

    Google Scholar 

  38. Carandini, M., Heeger, D.J., Movshon, J.A.: Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997)

    Google Scholar 

  39. Ermentrout, B.: Complex dynamics in winner-take-all neural nets with slow inhibition. Neural Networks 5(3), 415–431 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ning Zhong Jiming Liu Yiyu Yao Jinglong Wu Shengfu Lu Kuncheng Li

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knoblich, U., Bouvrie, J., Poggio, T. (2007). Biophysical Models of Neural Computation: Max and Tuning Circuits. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds) Web Intelligence Meets Brain Informatics. WImBI 2006. Lecture Notes in Computer Science(), vol 4845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77028-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77028-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77027-5

  • Online ISBN: 978-3-540-77028-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics