Advertisement

Probabilistic Perfectly Reliable and Secure Message Transmission – Possibility, Feasibility and Optimality

  • Kannan Srinathan
  • Arpita Patra
  • Ashish Choudhary
  • C. Pandu Rangan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4859)

Abstract

We study the interplay of network connectivity and the issues related to feasibility and optimality for probabilistic perfectly reliable message transmission (PPRMT) and probabilistic perfectly secure message transmission (PPSMT) in a synchronous network under the influence of a mixed adversary who possesses unbounded computing power and can corrupt different set of nodes in Byzantine, omission, failstop and passive fashion simultaneously. Our results show that that randomness helps in the possibility of multiphase PPSMT and significantly improves the lower bound on communication complexity for both PPRMT and PPSMT protocols!!

Keywords

Probabilistic Reliability Information Theoretic Security Fault Tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 394–408. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Cover, T.H., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Chichester (2004)Google Scholar
  3. 3.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. JACM 40(1), 17–47 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Franklin, M., Wright, R.N.: Secure communication in minimal connectivity models. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 346–360. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmission scheme. Cryptology ePrint Archive, Report 2007/076 (2007), http://eprint.iacr.org/
  6. 6.
    Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)Google Scholar
  7. 7.
    Patra, A., Choudhary, A., Srinathan, K., Rangan, P.C.: Bit optimal protocols for perfectly reliable and secure message transmission in the presence of mixed adversary. ManuscriptGoogle Scholar
  8. 8.
    Patra, A., Choudhary, A., Srinathan, K., Rangan, P.C.: Does randomization helps in reliable and secure communication. ManuscriptGoogle Scholar
  9. 9.
    Patra, A., Choudhary, A., Srinathan, K., Rangan, C.P.: Constant phase bit optimal protocols for perfectly reliable and secure message transmission. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 221–235. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proc. of twenty-first annual ACM symposium on Theory of computing, pp. 73–85. ACM Press, New York (1989)CrossRefGoogle Scholar
  11. 11.
    Srinathan, K.: Secure Distributed Communication. PhD thesis, Indian Institute of Technology Madras (2006)Google Scholar
  12. 12.
    Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Srinathan, K., Prasad, N.R., Rangan, C.P.: On the optimal communication complexity of multiphase protocols for perfect communication. In: IEEE Symposium on Security and Privacy, pp. 311–320 (2007)Google Scholar
  14. 14.
    Wang, Y., Desmedt, Y.: Secure communication in multicast channels: The answer to Franklin and Wright’s question. Journal of Cryptology 14(2), 121–135 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kannan Srinathan
    • 2
  • Arpita Patra
    • 1
  • Ashish Choudhary
    • 1
  • C. Pandu Rangan
    • 1
  1. 1.Dept of Computer Science and Engineering, IIT Madras, Chennai, 600036India
  2. 2.Center for Security, Theory and Algorithmic Research, International Institute of Information Technology, Hyderabad 500032India

Personalised recommendations