INDOCRYPT 2007: Progress in Cryptology – INDOCRYPT 2007 pp 152-166

# A Graph Theoretic Analysis of Double Base Number Systems

• Vassil Dimitrov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4859)

## Abstract

Double base number systems (DBNS) provide an elegant way to represent numbers. These representations also have many interesting and useful properties, which have been exploited to find many applications in Cryptography and Signal Processing. In the current article we present a scheme to represent numbers in double (and multi-) base format by combinatorial objects like graphs and diagraphs. The combinatorial representation leads to proof of some interesting results about the double and multibase representation of integers. These proofs are based on simple combinatorial arguments. In this article we have provided a graph theoretic proof of the recurrence relation satisfied by the number of double base representations of a given integer. The result has been further generalized to more than 2 bases. Also, we have uncovered some interesting properties of the sequence representing the number of double base representation of a positive integer n. It is expected that the combinatorial representation can serve as a tool for a better understanding of the double (and multi-) base number systems.

## Keywords

Double base number system DBNS-graphs MB-graphs

## References

1. 1.
Avanzi, R.M., Sica, F.: Scalar Multiplication on Koblitz Curves using Double Bases. Available at http://eprint.iacr.org/2006/067.pdf
2. 2.
Avanzi, R.M., Dimitrov, V., Doche, C., Sica, F.: Extending Scalar Multiplication to Double Bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 130–144. Springer, Heidelberg (2006)
3. 3.
Berth é, V., Imbert, L.: On converting numbers to the double-base number system. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architecture and Implementations XIV, Proceedings of SPIE, vol. 5559, pp. 70–78. SPIE, San Jose, CA (2004)Google Scholar
4. 4.
Ciet, M., Lauter, K., Joye, M., Montgomery, P.L.: Trading inversions for multiplications in elliptic curve cryptography. Designs, Codes and Cryptography 39(2), 189–206 (2006)
5. 5.
Bosma, W.: Signed bits and fast exponentiation. J. Theor. Nombres Bordeaux 13, 27–41 (2001)
6. 6.
Ciet, M., Lauter, K., Joye, M., Montgomery, P.L.: Trading inversions for multiplications in elliptic curve cryptography. Designs, Codes and Cryptography 39(2), 189–206 (2006)
7. 7.
Ciet, M., Sica, F.: An Analysis of Double Base Number Systems and a Sublinear Scalar Multiplication Algorithm. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 171–182. Springer, Heidelberg (2005)
8. 8.
de Weger, B.M.M.: Algorithms for Diophantine equations of CWI Tracts. In: Centrum voor Wiskunde en Informatica, Amsterdam (1989)Google Scholar
9. 9.
Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)
10. 10.
Dimitrov, V.S., Imbert, L., Mishra, P.K.: The Double Base Number System and Its Applications to Elliptic Curve Cryptography. Research Report LIRMM #06032 (May 2006)Google Scholar
11. 11.
Dimitrov, V., Järvinen, K.U., Jacobson, M.J., Chan, W.F., Huang, Z.: FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 445–459. Springer, Heidelberg (2006)
12. 12.
Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponentiation. Information Processing Letters 66(3), 155–159 (1998)
13. 13.
Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Theory and applications of the double-base number system. IEEE Transactions on Computers 48(10), 1098–1106 (1999)
14. 14.
Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)
15. 15.
Doche, C., Icart, T., Kohel, D.: Efficient Scalar Multiplication by Isogeny Decompositions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)
16. 16.
Mahler, K.: On a Special Functional Equation. J of London Math Soc. 15, 115–123 (1939)
17. 17.
Mishra, P.K., Dimitrov, V.: Efficient Quintuple Formulas and Efficient Elliptic Curve Scalar Multiplication using Multibase Number Representation. In ISC (to appear, 2007)Google Scholar
18. 18.
Mishra, P.K., Dimitrov, V.: WIndow-based Elliptic CUrve Scalar Multiplication Using Double Base Number Representation. In Inscrypt (to appear, 2007)Google Scholar
19. 19.
Pennington, W.B.: On Mahler’s partition problem. Annals of Math. 57, 531–546 (1953)
20. 20.
21. 21.
Tijdeman, R.: On the maximal distance between integers composed of small primes. Compositio Mathematica 28, 159–162 (1974)