Advertisement

A Graph Theoretic Analysis of Double Base Number Systems

  • Pradeep Kumar Mishra
  • Vassil Dimitrov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4859)

Abstract

Double base number systems (DBNS) provide an elegant way to represent numbers. These representations also have many interesting and useful properties, which have been exploited to find many applications in Cryptography and Signal Processing. In the current article we present a scheme to represent numbers in double (and multi-) base format by combinatorial objects like graphs and diagraphs. The combinatorial representation leads to proof of some interesting results about the double and multibase representation of integers. These proofs are based on simple combinatorial arguments. In this article we have provided a graph theoretic proof of the recurrence relation satisfied by the number of double base representations of a given integer. The result has been further generalized to more than 2 bases. Also, we have uncovered some interesting properties of the sequence representing the number of double base representation of a positive integer n. It is expected that the combinatorial representation can serve as a tool for a better understanding of the double (and multi-) base number systems.

Keywords

Double base number system DBNS-graphs MB-graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avanzi, R.M., Sica, F.: Scalar Multiplication on Koblitz Curves using Double Bases. Available at http://eprint.iacr.org/2006/067.pdf
  2. 2.
    Avanzi, R.M., Dimitrov, V., Doche, C., Sica, F.: Extending Scalar Multiplication to Double Bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 130–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Berth é, V., Imbert, L.: On converting numbers to the double-base number system. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architecture and Implementations XIV, Proceedings of SPIE, vol. 5559, pp. 70–78. SPIE, San Jose, CA (2004)Google Scholar
  4. 4.
    Ciet, M., Lauter, K., Joye, M., Montgomery, P.L.: Trading inversions for multiplications in elliptic curve cryptography. Designs, Codes and Cryptography 39(2), 189–206 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bosma, W.: Signed bits and fast exponentiation. J. Theor. Nombres Bordeaux 13, 27–41 (2001)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ciet, M., Lauter, K., Joye, M., Montgomery, P.L.: Trading inversions for multiplications in elliptic curve cryptography. Designs, Codes and Cryptography 39(2), 189–206 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ciet, M., Sica, F.: An Analysis of Double Base Number Systems and a Sublinear Scalar Multiplication Algorithm. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 171–182. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    de Weger, B.M.M.: Algorithms for Diophantine equations of CWI Tracts. In: Centrum voor Wiskunde en Informatica, Amsterdam (1989)Google Scholar
  9. 9.
    Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Dimitrov, V.S., Imbert, L., Mishra, P.K.: The Double Base Number System and Its Applications to Elliptic Curve Cryptography. Research Report LIRMM #06032 (May 2006)Google Scholar
  11. 11.
    Dimitrov, V., Järvinen, K.U., Jacobson, M.J., Chan, W.F., Huang, Z.: FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 445–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponentiation. Information Processing Letters 66(3), 155–159 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Theory and applications of the double-base number system. IEEE Transactions on Computers 48(10), 1098–1106 (1999)CrossRefGoogle Scholar
  14. 14.
    Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Doche, C., Icart, T., Kohel, D.: Efficient Scalar Multiplication by Isogeny Decompositions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Mahler, K.: On a Special Functional Equation. J of London Math Soc. 15, 115–123 (1939)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Mishra, P.K., Dimitrov, V.: Efficient Quintuple Formulas and Efficient Elliptic Curve Scalar Multiplication using Multibase Number Representation. In ISC (to appear, 2007)Google Scholar
  18. 18.
    Mishra, P.K., Dimitrov, V.: WIndow-based Elliptic CUrve Scalar Multiplication Using Double Base Number Representation. In Inscrypt (to appear, 2007)Google Scholar
  19. 19.
    Pennington, W.B.: On Mahler’s partition problem. Annals of Math. 57, 531–546 (1953)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Reitwiesner, G.: Binary Arithmetic. Adv. Comput. 1, 231–308 (1962)Google Scholar
  21. 21.
    Tijdeman, R.: On the maximal distance between integers composed of small primes. Compositio Mathematica 28, 159–162 (1974)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pradeep Kumar Mishra
    • 1
  • Vassil Dimitrov
    • 1
  1. 1.University of Calgary, Calgary, ABCanada

Personalised recommendations