Skip to main content

Evaluating Simulated Annealing Algorithms in the Optimization of Bacterial Strains

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4874))

Abstract

In this work, a Simulated Annealing (SA) algorithm is proposed for a Metabolic Engineering task: the optimization of the set of gene deletions to apply to a microbial strain to achieve a desired production goal. Each mutant strain is evaluated by simulating its phenotype using the Flux-Balance Analysis approach, under the premise that microorganisms have maximized their growth along natural evolution. A set based representation is used in the SA to encode variable sized solutions, enabling the automatic discovery of the ideal number of gene deletions. The approach was compared to the use of Evolutionary Algorithms (EAs) to solve the same task. Two case studies are presented considering the production of succinic and lactic acid as the target, with the bacterium E. coli. The variable sized SA seems to be the best alternative, outperforming the EAs, showing a fast convergence and low variability among the several runs and also enabing the automatic discovery of the ideal number of knockouts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borodina, I., Nielsen, J.: From genomes to in silico cells via metabolic networks. Current Opinion in Biotechnology 16(3), 350–355 (2005)

    Article  Google Scholar 

  2. Burgard, A.P., Pharya, P., Maranas, C.D.: Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003)

    Article  Google Scholar 

  3. Chassagnole, C., Noisommit-Rizzi, N., Schmid, J.W., Mauch, K., Reuss, M.: Dynamic modeling of the central carbon metabolism of escherichia coli. Biotechnology and Bioengineering 79(1), 53–73 (2002)

    Article  Google Scholar 

  4. Covert, M.W., Schilling, C.H., Famili, I., Edwards, J.S., Goryanin, I.I., Selkov, E., Palsson, B.O.: Metabolic modeling of microbial strains in silico. Trends in Biochemical Sciences 26(3), 179–186 (2001)

    Article  Google Scholar 

  5. Hofvendahl, K., Hahn-Hagerdal, B.: Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microbial Technology 26, 87–107 (2000)

    Article  Google Scholar 

  6. Ibarra, R.U., Edwards, J.S., Palsson, B.G.: Escherichia coli k-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002)

    Article  Google Scholar 

  7. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003)

    Article  Google Scholar 

  8. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  9. Lee, S.Y., Hong, S.H., Moon, S.Y.: In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered escherichia coli as an example. Genome Informatics 13, 214–223 (2002)

    Google Scholar 

  10. Nielsen, J.: Metabolic engineering. Appl. Microbiol. Biotechnol. 55, 263–283 (2001)

    Article  Google Scholar 

  11. Patil, K., Rocha, I., Forster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6(308) (2005)

    Google Scholar 

  12. Reed, J.L., Vo, T.D., Schilling, C.H., Palsson, B.O.: An expanded genome-scale model of escherichia coli k-12 (ijr904 gsm/gpr). Genome Biology 4(9) R54.1–R54.12 (2003)

    Google Scholar 

  13. Rocha, M., Pinto, J.P., Rocha, I., Ferreira, E.C.: Optimization of Bacterial Strains with Variable-Sized Evolutionary Algorithms. In: Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 331–337. IEEE Press, Honolulu, USA (2007)

    Google Scholar 

  14. Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and perturbed metabolic networks. Proc. National Acad. Sciences USA 99, 15112–15117 (2002)

    Article  Google Scholar 

  15. Stephanopoulos, G., Aristidou, A.A., Nielsen, J.: Metabolic engineering principles and methodologies. Academic Press, San Diego (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Neves Manuel Filipe Santos José Manuel Machado

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rocha, M., Mendes, R., Maia, P., Pinto, J.P., Rocha, I., Ferreira, E.C. (2007). Evaluating Simulated Annealing Algorithms in the Optimization of Bacterial Strains. In: Neves, J., Santos, M.F., Machado, J.M. (eds) Progress in Artificial Intelligence. EPIA 2007. Lecture Notes in Computer Science(), vol 4874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77002-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77002-2_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77000-8

  • Online ISBN: 978-3-540-77002-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics