Skip to main content

Neutron Star Cooling: II

  • Chapter
Neutron Stars and Pulsars

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 357))

It was more than 70 years ago when Baade and Zwicky [3] speculated that an “exotic” star consisting mostly of neutrons, now known as a neutron star, may be formed when a normal star collapses through a supernova explosion. During the subsequent years in the 1930s several theorists, including Oppenheimer and Volkoff [35], discussed the properties of neutron stars. However, it was not until the late 1950s to the early 1960s, when curiosity on such a hypothetical object revived [11,73]. As far as I am aware Cameron [11] is the first author who discussed thermodynamic problems of neutron stars. This article's author chose to explore this problem as one of the projects on neutron stars as her PhD thesis [59]. The research started as a purely theoretical endeavor, but before the calculations were completed we learned of the discovery of the first Galactic X-ray source Sco X-1, which was soon followed by the second such Galactic X-ray source detection, this time in the Crab supernova remnant [15]. It was immediately suggested by several theorists [19, 59, 66] that these strong X-ray sources might be neutron stars, because if these X-rays are blackbody radiation as expected, the radius of the emitting region has to be as small as ˜10 km (because the temperature is so high), just the correct size predicted for a neutron star.1

The first series of our detailed cooling calculations [59, 66] indeed showed that these stars can be hot enough to emit X-rays for approximately a million years after a supernova explosion. However, subsequent observations indicated that the Crab X-ray source is “extended”, and the spectrum of Sco X-1 radiation is not blackbody [9]. At about the same time Bahcall and Wolf (1965) [4] suggested that if pions are present in a neutron star, the star will cool too fast to be observable. The unexpected discovery of a neutron star, however, was soon reported in 1968, in the form of a radio pulsar [20]. With the subsequent discovery of many more radio pulsars [57], as well as X-ray pulsars by UHURU and other X-ray satellite missions [24], a neutron star is now an established, no longer “exotic” member of the celestial family. On the other hand, the prospect of directly “seeing” a neutron star, in the sense of detecting the radiation directly from the stellar surface, as in the case for ordinary stars, has turned out to be elusive. This is because the circumstellar plasmas, in accretion disks and/or the stellar magnetosphere, can emit X-rays, too, often stronger than the stellar surface radiation, and it was beyond the capability of the earlier pioneering detectors to separate one from the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Alpar, K.S. Cheng, D. Pines, et al.: ApJ 346, 823 (1989)

    Article  ADS  Google Scholar 

  2. L. Amundsen, E. Ostgarrd: Nucl. Phys. A 442, 163 (1985)

    ADS  Google Scholar 

  3. W. Baade, F. Zwicky: Phys. Rev. 46, 76 (1934)

    Article  ADS  Google Scholar 

  4. J.N. Bahcall, R.A. Wolf: Phys. Rev. B 140, 1452 (1965)

    Article  ADS  Google Scholar 

  5. G. Baym, C. Pethick, P. Sutherland: ApJ 170, 299 (1971)

    Article  ADS  Google Scholar 

  6. W. Becker: PhD Thesis, University of Munich, Munich (1995)

    Google Scholar 

  7. W. Becker: X-Ray emissions from pulsars and neutron stars. In: Neutron Stars and Pulsars, ed. by W. Becker (Springer, Heidelberg, 2008)

    Google Scholar 

  8. W. Becker, G. Pavlov: Pulsars and isolated neutron stars. In: The Century of Space Science, ed. by J. Breeker et al. (Kluwer, Dordrecht, 2002) (Astro-ph/0208356) (BP02)

    Google Scholar 

  9. S. Bowyer, E.T. Byram, T.A. Chubb, et al.: Science 146, 912 (1964); R. Giacconi, H. Gursky, J. Waters: Nature 207, 572 (1965); G. Clark: Phys. Rev. Lett. 14, 91 (1965)

    Article  ADS  Google Scholar 

  10. W.F. Brisken, S.E. Thorsett, A. Golden, W.M. Goss: ApJ 593, L89 (2003)

    Article  ADS  Google Scholar 

  11. A.G.W. Cameron: ApJ 130, 884 (1959)

    Article  ADS  Google Scholar 

  12. R. Dodson, D. Legge, J.A. Reynolds, et al.: ApJ 596, 1137 (2003)

    Article  ADS  Google Scholar 

  13. E.G. Flowers, M. Ruderman, P.G. Sutherland: ApJ 205, 541 (1976)

    Article  ADS  Google Scholar 

  14. B. Friedman, V.R. Pandharipande: Nucl. Phy. A 361, 502 (1981)

    Article  ADS  Google Scholar 

  15. R. Giacconi, H. Gursky, F.R. Paolini, et al.: Phys. Rev. Lett. 9, 439 (1962); H. Gursky, R. Giacconi, F.R. Paolini, et al.: Phys. Rev. Lett. 11, 530 (1963); S. Bowyer, E.T. Byram, T.A. Chubb, et al.: Nature 201, 1307 (1964)

    Article  ADS  Google Scholar 

  16. R. Giacconi, E.J. Schreier, F.D. Seward, CFA/HEA preprint 78—214

    Google Scholar 

  17. M.E. Gonzalez, V.M. Kaspi, A.G. Lyne, M.J. Pivovaroff: ApJ 610, L37 (2004) (Gon04)

    Article  ADS  Google Scholar 

  18. J.P. Halpern, E.V. Gotthelf, F. Camilo, et al.: ApJ 612, 398 (2004) (H04)

    Article  ADS  Google Scholar 

  19. S. Hayakawa: Prog. Theor. Phys. (1964); H.Y. Chiu, E.E. Salpeter: Phys. Rev. Lett. 12, 412 (1964)

    Google Scholar 

  20. A. Hewish, S.J. Bell, J.D.H. Pikington, et al.: Nature 217, 709 (1968)

    Article  ADS  Google Scholar 

  21. M. Hoffberg, A.E. Glassgold, R.W. Richardson, et al.: Phys. Rev. Lett. 24, 775 (1970)

    Article  ADS  Google Scholar 

  22. J.P. Hughes, P.O. Slane, S. Park, et al.: ApJ 591, L139 (2003) (H03)

    Article  ADS  Google Scholar 

  23. C.Y. Hui, W. Becker: A&A 454, 543(2006)

    Article  ADS  Google Scholar 

  24. P.C. Joss, S. Rappaport: Nature 264, 219 (1976); W. Lewin, P. Joss: In: X-ray binaries, ed by W.H.G. Lewin, et al. (Cambridge University Press, Cambridge 1995), and references therein

    Article  ADS  Google Scholar 

  25. A.D. Kaminker, M.E. Gusakov, D.G. Yakovlev, et al.: MNRAS 365, 1300 (2006), Astro-ph/0511179, and references therein

    Article  ADS  Google Scholar 

  26. D.L. Kaplan, S.R. Kulkarni, D.A. Frail, B.M. Gaensler, P.O. Slane, E.V. Gotthelf: In: Young neutron stars and their environments, ed by F. Camilo et al. (ASP, San Francisco, 2004) pp. 123–126 (Ka04)

    Google Scholar 

  27. O.Y. Kargaltsev, G.G. Pavlov, V.E. Zavlin, et al.: ApJ 625, 307 (2005) (Astro-ph/0502076) (Ka05)

    Article  ADS  Google Scholar 

  28. J.M. Lattimer, C.J. Pethick, M. Prakash, et al.: Phys. Rev. Lett. 66, 2701 (1991)

    Article  ADS  Google Scholar 

  29. O.V. Maxwell: ApJ 231, 201 (1979)

    Article  ADS  Google Scholar 

  30. K.E. McGowan, S. Zane, M. Cropper, et al.: ApJ 600, 343 (2004) (M04)

    Article  ADS  Google Scholar 

  31. C. Motch, V.E. Zavlin, F. Haberl: A&A 408, 323 (2003) (MZH03)

    Article  ADS  Google Scholar 

  32. S. Nishizaki, Y. Yamamoto, T. Takatsuka: Prog. Theor. Phys. 108, 703 (2002) (NYT02)

    Article  MATH  ADS  Google Scholar 

  33. K. Nomoto, S. Tsuruta: ApJ 250, L19 (1981); K. Nomoto, S. Tsuruta: ApJ 305, L19 (1986)

    Article  ADS  Google Scholar 

  34. K. Nomoto, S. Tsuruta: ApJ 312, 711 (1987)

    Article  ADS  Google Scholar 

  35. J.R. Oppenheimer, G.M. Volkoff: Phys. Rev. 55, 374 (1939)

    Article  MATH  ADS  Google Scholar 

  36. D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner: ApJ Suppl. Series 155, 623 (2004) (PLPS04)

    Article  ADS  Google Scholar 

  37. V.R. Pandharipande, D. Pines, R.A. Smith: ApJ 208, 550 (1976)

    Article  ADS  Google Scholar 

  38. G.G. Pavlov, V.E. Zavlin, B. Aschenbach, et al.: ApJ 531, L53 (2000) (P00)

    Article  ADS  Google Scholar 

  39. G.G. Pavlov, V.E. Zavlin, D. Sanwal: In: Proc. 270th WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, MPE Rep. 278, ed by W. Becker, H. Lesch, J. Trümper (Garching: MPE 2002) p. 273 (2002)(P02)

    Google Scholar 

  40. G.G. Pavlov, V.E. Zavlin, D. Sanwal, et al.: ApJ 552, L129 (2001) (P01)

    Article  ADS  Google Scholar 

  41. J.A. Pons, F.M. Walter, J.M. Lattimer, et al.: ApJ 564, 981 (2002) (Pon02)

    Article  ADS  Google Scholar 

  42. A.Y. Potekhin, G. Chabrier, D.G.Yakovlev: A&A 323, 415 (1997) (PCY97)

    ADS  Google Scholar 

  43. A.Y. Potekhin, D.G. Yakovlev, G. Chabrier, et al.: ApJ 594, 404 (2003), and reference therein

    Article  ADS  Google Scholar 

  44. M.B. Richardson, H.M. Van Horn, K.F. Ratcliff, et al.: ApJ 255, 624 (1982), and references therein

    Article  ADS  Google Scholar 

  45. D. Sanwal, M.A. Teter, V.E. Zavlin, et al.: ApJ, in preparation (2007) (S07)

    Google Scholar 

  46. P. Slane: In: Young neutron stars and their environments, ed by F. Camilo et al. (ASP, San Francisco, 2004), pp. 185–188, and reference therein (S04)

    Google Scholar 

  47. T. Takatsuka: Prog. Theor. Phys. 48, 1517 (1972)

    Article  ADS  Google Scholar 

  48. T. Takatsuka, R. Tamagaki: Prog. Theor. Phys. 64, 2270 (1980); T. Takatsuka, R. Tamagaki: Prog. Theor. Phys. 67, 1649 (1982)

    Article  ADS  Google Scholar 

  49. T. Takatsuka, R. Tamagaki: Prog. Theor. Phys. 94, 457 (1995) (TT95)

    Article  ADS  Google Scholar 

  50. T. Takatsuka, R. Tamagaki: Prog. Theor. Phys. 97, 345 (1997) (TT97)

    Article  ADS  Google Scholar 

  51. T. Takatsuka, R. Tamagaki: Prog. Theor. Phys. 102, 1043 (1999)

    Article  ADS  Google Scholar 

  52. T. Takatsuka, R. Tamagaki: Prog. Theor. Phys. 105, 179 (2001) (TT01)

    Article  ADS  Google Scholar 

  53. T. Takatsuka, R. Tamagaki: Prog. Theor. Phys. 112, 37 (2004) (TT04)

    Article  MATH  ADS  Google Scholar 

  54. T. Takatsuka, S. Nishizaki, Y. Yamamoto, et al.: Prog. Theor. Phys. 115, 355 (2006), and references therein (Ta06)

    Article  ADS  Google Scholar 

  55. R. Tamagaki, T. Takatsuka: Prog. Theor. Phys. 115, 245 (2006a) (TT06a); R. Tamagaki, T. Takatsuka: Prog. Theor. Phys. 116, 573 (2006b) (TT06b)

    Article  ADS  Google Scholar 

  56. R. Tamagaki, T. Takatsuka: Prog. Theor. Phys. 117, No. 5 (2007) (TT07)

    Google Scholar 

  57. J.H. Tayler, R.N. Manchester, A.G. Lyne: ApJ (Suppl.) 88, 529 (1993); T. Gold: Nature 218, 731 (1968); F. Pacini: Nature 219, 145 (1968)

    Article  ADS  Google Scholar 

  58. K.S. Thorne: ApJ 212, 825 (1977)

    Article  ADS  Google Scholar 

  59. S. Tsuruta: Neutron star models. PhD Thesis, Columbia University, New York (1964)

    Google Scholar 

  60. S. Tsuruta: Phys. Rep. 56, 237 (1979)

    Article  ADS  Google Scholar 

  61. S. Tsuruta: Comm. Astrophys. 11, 151 (1986)

    ADS  Google Scholar 

  62. S. Tsuruta: Phys. Rep. 292, 1–130 (1998) (T98)

    Article  ADS  Google Scholar 

  63. S. Tsuruta: In: Young neutron stars and their environments, ed by F. Camilo et al (ASP, San Francisco, 2004) pp. 21–28

    Google Scholar 

  64. S. Tsuruta: In: Origin of matter and evolution of galaxies, ed by Kubono et al (AIP 2006) pp. 163–170 (Astro-ph/0602138)

    Google Scholar 

  65. S. Tsuruta: In: Stellar astrophysics, ed by Y.W. Wang et al., ASP, 362, 111 (ASP, 2007)

    Google Scholar 

  66. S. Tsuruta, A.G.W. Cameron: Canad. J. Phys. 44, 1863 (1966) (TC66)

    ADS  Google Scholar 

  67. S. Tsuruta, M. A. Teter, T. Takatsuka, T. Tatsumi, R. Tamagaki: ApJ 571, L143 (2002)

    Article  ADS  Google Scholar 

  68. S. Tsuruta, et al., in preparation (2008)

    Google Scholar 

  69. H. Umeda, K. Nomoto, S. Tsuruta, et al.: ApJ 431, 309 (1994)

    Article  ADS  Google Scholar 

  70. H. Umeda, S. Tsuruta, K. Nomoto: ApJ 433, 256 (1995) (UTN95)

    Article  ADS  Google Scholar 

  71. H. Umeda, N. Shibazaki, K. Nomoto, et al.: ApJ 408, 186 (1993)

    Article  ADS  Google Scholar 

  72. M.C. Weisskopf, S.L. O'Dell, F. Paerels, et al.: ApJ 601, 1050 (2004) (W04)

    Article  ADS  Google Scholar 

  73. J.A. Wheeler, B.K. Harrison, M. Wakano: In: La Structure et l'evolution de l'univers, ed by T. Stoops (Brussels, 1958); E.E. Salpeter: ApJ. 134, 669 (1961)

    Google Scholar 

  74. P.M. Woods, V.E. Zavlin, G.G. Pavlov: Appl. Space Sci., 308, 239 (2007) (WZP06)

    Article  ADS  Google Scholar 

  75. D.G. Yakovlev, O.Y. Gnedin, A.D. Kaminker, et al.: Adv. Space Res. 33, 523 (2004), and references therein

    Article  ADS  Google Scholar 

  76. D.G. Yakovlev, K.P. Levenfish, Yu.A. Shibanov: Phys. Usp. 42, 737 (1999) (YLS99)

    Article  ADS  Google Scholar 

  77. D.G. Yakovlev, C.J. Pethick: Ann. Rev. Astron. Astrophys. 42, 169 (2004)

    Article  ADS  Google Scholar 

  78. V.E. Zavlin, G.G. Pavlov: In: Proc. XMM-Newton EPIC Consotium Memorie della Societa' Astronomica Italiana, 75, 458 (2004) (ZP04)

    Google Scholar 

  79. V.E. Zavlin, G.G. Pavlov, D. Sanwal: ApJ 606, 444 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Tsuruta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsuruta, S. (2009). Neutron Star Cooling: II. In: Becker, W. (eds) Neutron Stars and Pulsars. Astrophysics and Space Science Library, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76965-1_12

Download citation

Publish with us

Policies and ethics