Skip to main content

Part of the book series: Eso Astrophysics Symposia ((ESO))

Abstract

The GEM (Grain Evolution Model) is a unique model which follows the cometary icy grains from the moment of ejection until complete sublimation. The model takes into accounts the different forces acting on each and every grain from the initial distribution, as they are passing through the coma and sublimating. The GEM is sensitive to the wavelength and composition of the grains and therefore can anticipate which grains can better match the observations at a certain wavelength. The GEM can predict the brightness of the entire coma in steady state, or as in the Deep Impact Mission it can calculate the coma brightness at different cross sections of time while differentiating between the contribution of the nucleus and that of the grains. In this paper we will show that nearly pure ice grains, i.e. 1–5% of Pyroxene, match the observations from the Deep Impact Mission since they can give a reasonable explanation for the UV enhanced rapid and decline after 20–30 minutes. Furthermore nearly pure ice grains explain the sustained brightness in the UV that lasts 7–14 hours[20]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. A’Hearn M. F. M, Belton M. J., Delamere W. A. et al. (2005): Science, 310, 258.

    Article  ADS  Google Scholar 

  2. Basilevsky A. T. and Keller H. U. (2006): Planet. Space. Sci., 54, 808.

    Article  ADS  Google Scholar 

  3. Beer E. H., Podolak M.and Prialnik D. (2006): Icarus, 180, 473.

    Article  ADS  Google Scholar 

  4. Beer E., Prialnik D. and Podolak M. (2008): Icarus, 195, 340.

    Article  ADS  Google Scholar 

  5. Beer E., Wooden, D., Schulz, R., and Weaver, Wm. B. (2007b):Icarus, in preparation.

    Google Scholar 

  6. Delsemme A. H. and Miller D. C. (1971): Planet. Space. Sci., 19,1229.

    Google Scholar 

  7. DiSanti M. et al. (2006): Icarus accepted

    Google Scholar 

  8. Dorschner, J. et al. (1995): Astron. Astrophys., 300, 403.

    Google Scholar 

  9. Fanale F. P. and Salvail J. R. (1984): Icarus, 60, 476.

    Article  ADS  Google Scholar 

  10. Harker D. E., Woodward C. E. and Wooden D. H. (2005): Science, 310, 278.

    Article  ADS  Google Scholar 

  11. Harker D. et al. (2006): Icarus Accpted

    Google Scholar 

  12. Keller H. U., Jorda L., KuppersM. et al. (2005): Science, 310, 281.

    Article  ADS  Google Scholar 

  13. Kunz S. K., (1957) Numerical Analysis (Mcgraw–Hill Book Company, Inc.).

    Google Scholar 

  14. Lisse C. M., VanCleve J., Adams A. C. et al. (2006): Science, 313, 635.

    Article  ADS  Google Scholar 

  15. Meech K.J., Ageorges N., A’Hearn M. F. et al. (2005): Science, 310, 258.

    Article  ADS  Google Scholar 

  16. Merrill W. M., Diaze R. E., LoRe M.M. et al. (1999): IEEE Transactions on Antennas and Propagation, 47, 142.

    Article  ADS  Google Scholar 

  17. Mumma M. J., Disanti M. A., Magee–Sauer K. et al. (2005): Science, 310, 270.

    Article  ADS  Google Scholar 

  18. Richardson J. E. and Melosh H. J. (2006): Lunar and Planetary Science, 37, 1836.

    ADS  Google Scholar 

  19. Schleicher D. G., Barnes K. L. and Baugh N. F. (2006): Astrophys. J., 131, 1130.

    ADS  Google Scholar 

  20. Schulz R., Owens A., Rodrigues–Pascual P. M. et al. (2006): Astron. Astrophys., 448L, 53.

    Article  ADS  Google Scholar 

  21. Semenov, D. et al. (2003): Astron. Astrophys., 410, 611.

    Article  ADS  Google Scholar 

  22. Semenov, D. (2005): private communication.

    Google Scholar 

  23. Sunshine J. et al. (2006): private comunication.

    Google Scholar 

  24. Sugita S., Ootsubo T. , Kadono T. et al. (2005): Science, 310, 274.

    Article  ADS  Google Scholar 

  25. van de Hulst, Light Scattering by Small Particles (Dover Publications Inc., New York, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beer, E., Wooden, D.H., Schulz, R. (2009). The Grain Evolution Model for Icy Grains Ejected from 9P/Tempel 1 by Deep Impact. In: Käufl, H., Sterken, C. (eds) Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength. Eso Astrophysics Symposia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76959-0_6

Download citation

Publish with us

Policies and ethics