Skip to main content

Impact Cratering on Volatile-rich Targets: Some Remarks Related to the Deep Impact Experiment

  • Conference paper
Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength

Part of the book series: Eso Astrophysics Symposia ((ESO))

  • 458 Accesses

Abstract

The NASA Deep Impact experiment has important implications to better understand cratering processes on planetary bodies and the production and evolution of ejecta. This man-made impact of a solid Cu body on the nucleus of a comet fills the large gap existing between data derived from small-scale cratering experiments and large-scale field or remote sensing observations of craters. DI thus complements hydrocode modeling of cratering processes. The majority of cratering studies focus on solid silicate-rich targets rather than on porous, poorly consolidated and/or volatile-rich materials. However, volatile targets are common in the Solar System. The lessons learned from the DI collision with comet 9P/Tempel not only clarify the composition and physical properties of the cometary nucleus, but also can shed light on cratering mechanisms and evolution of plume and ejecta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A’Hearn, M.F., and 32 others., 2005, Deep Impact: Excavating comet Tempel 1: Science, v. 310, p. 258–264.

    Article  ADS  Google Scholar 

  2. Alvarez, W., Claeys, p., and Kieffer, S.W., 1995, Emplacement of Cretaceous-Tertiary Boundary Shocked Quartz from Chicxulub Crater: Science, v. 269, p. 930–935.

    Article  ADS  Google Scholar 

  3. Artemieva, N., and Morgan, J., 2007, Distal ejecta from the Chicxulub – Numerical model, Lunar and Planetary Science Conference, v. 38, Houston, Lunar and Planetary Institute, CD-ROM {#} 1543.

    Google Scholar 

  4. Brandt, J.C., and Chapman, C.R., 2004, Introduction to comets: Cambridge USA, Cambridge University Press, 249 p.

    Google Scholar 

  5. Burchell, M.J., Grey, I.D.S., and Shrine, N.R.G., 2001, Laboratory investigations of hypervelocity impact cratering in ice, Io, Europa, Titan and Cratering of Icy Surfaces, Volume 28: Advances in Space Research, p.1521–1526.

    Article  ADS  Google Scholar 

  6. Burchell, M.J., and Johnson, E., 2005a, Impact craters on small icy bodies such as icy satellites and comet nuclei doi: 10.1111/j.1365-2966.2005.09122.x: Monthly Notices of the Royal Astronomical Society, v. 360, p. 769–781.

    Article  ADS  Google Scholar 

  7. Burchell, M.J., Leliwa-Kopystynski, J., and Arakawa, M., 2005b, Cratering of icy targets by different impactors: Laboratory experiments and implications for cratering in the Solar System: Icarus, v. 179, p. 274–288.

    Article  ADS  Google Scholar 

  8. Busko, I., Lindler, D., A’Hearn, M.F., and White, R.L., 2007, Searching for the Deep Impact crater on Comet 9P/Tempel 1 using image processing techniques: Icarus, v. 187, p. 56–68.

    Article  ADS  Google Scholar 

  9. Claeys, p., 2006, Chicxulub, anatomy of a large impact structure: from impactite to ejecta distribution, 40th ESLAB-ESA First International Conference on Cratering in the Solar System, Volume SP-612, WPP-266: Noordwijk, NL, European Space Agency, p. 1–12.

    Google Scholar 

  10. Claeys, p., Kiessling, W., and Alvarez W., 2002, Distribution of Chicxulub ejecta at the Cretaceous-Tertiary Boundary, in Koeberl, C., and MacLeod, K.G., eds., Geological Society of America Special Paper v. 356, p. 55–69.

    Google Scholar 

  11. Claeys, p., Heuschkel, S., Louvejeva-Baturina, E., Sanchez-Rubio, G., and Stoeffler, D., 2003, The suevite in drill hole Yucatan 6 in the Chicxulub impact crater: Meteoritics & Planetary Science, v. 38, p. 1299–1317.

    Article  ADS  Google Scholar 

  12. Dypvik, H., and Jansa, L.F., 2003, Sedimentary signatures and processes during marine bolide impacts: a review: Sedimentary Geology, v. 161, p.309–337.

    Article  ADS  Google Scholar 

  13. French, B.M., 1998, Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures: Houston, Lunar and Planetary Institute, 120 p.

    Google Scholar 

  14. Gersonde, R., Deutsch, A., Ivanov, B.A., and Kyte, F.T., 2002, Oceanic impacts - A growing field of fundamental geosciences: Deep-Sea Research II, v. 49,p. 951–957.

    Article  Google Scholar 

  15. Gifford, A.C., 1924, The mountains of the Moon: New Zealand Journal of Science and Technology, v. 7, p. 129–142.

    Google Scholar 

  16. Grajales-Nishimura, J.M., Cedillo-Pardo, E., Rosales-Dominguez, C., Moran-Zenteno, D.J., Alvarez, W., Claeys, p., Ruiz-Morales, J., Garcia-Hernandez, J., Padilla-Avila, p., and Sanchez-Rios, A., 2000, Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields: Geology, v. 28, p. 307–310.

    Article  ADS  Google Scholar 

  17. Harker, D.E., Woodward, C.E., and Wooden, D.H., 2005, The dust grains from 9P/Tempel 1 before and after the encounter with deep impact: Science, v.310, p. 278–280.

    Article  ADS  Google Scholar 

  18. Hoffman, p.F., Kaufman, A.J., Halverson, G.p., and Schrag, D.p., 1998, A Neoproterozoic snowball Earth: Science, v. 281, p. 1342–1346.

    Article  ADS  Google Scholar 

  19. Jansa, L., Pe-Piper, G., Robertson, p.B., and Friedenreich, O., 1989, Montagnais: a submarine impact structure on the Scotian Shelf, eastern Canada: Geological Society of America Bulletin, v. 101, p. 450–463.

    Article  Google Scholar 

  20. Kyte, F.T., Zhou, Z., and Wasson, J., 1981, High noble metal concentrations in a late Pliocene sediment: Nature, v. 292, p. 417–420.

    Article  ADS  Google Scholar 

  21. Margolis, S.v., Claeys, p., and Kyte, F.T., 1991, Microtektites, microkrystites, and spinels from a late Pliocene asteroid impact in the Southern ocean: Science, v. 251, p. 1594–1597.

    Article  ADS  Google Scholar 

  22. Meech, K.J., and others 2005, Deep Impact: Observations from a worldwide Earth-based campaign: Science, v. 310, p. 265–269.

    Article  ADS  Google Scholar 

  23. Melosh, H.J., 1989, Impact cratering: A geologic process: New-York, Oxford University Press, 245 p.

    Google Scholar 

  24. Melosh, H.J., 2000, A new and improved equation of state for impact computations, Lunar and Planetary Science Conference, v. 31: Houston, Lunar and Planetary Institute, p. CD-ROM {#} 1903.

    Google Scholar 

  25. Pierazzo, E., and Collins, G., 2003, A brief introduction to hydrocode modeling of impact cratering, in Dypvik, H., Burchell, M., Claeys, Ph., ed., Cratering in marine environments and on ice: Berlin, Springer, p. 323–340.

    Google Scholar 

  26. Poag, C.W., Plescia, J.B., and Molzer, p.C., 2002, Ancient impact structures on modern continental shelves: Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America: Deep-Sea Research, v. II49, p.1081–1102.

    Google Scholar 

  27. Richardson, J.E., Melosh, H.J., Artemieva, N., and Pierazzo, E., 2005, Impact cratering theory and modeling for the Deep Impact Mission: from mission planning to data analysis: Space Science Review, v. 117, p. 241–267.

    Article  ADS  Google Scholar 

  28. Richardson, J.E., and Melosh, H.J., 2006, Modeling he ballistic behavior of solid ejecta from the Deep Impact cratering event, Lunar and Planetary Science Conference, v. 37: Houston, Lunar and Planetary institute, p. CD-ROM {#} 1836.

    Google Scholar 

  29. Robin, E., Froget, L., Jehanno, C., and Rocchia, R., 1993, Evidence for a K/T impact event in the Pacific Ocean: Nature, v. 363, p. 615–617.

    Article  ADS  Google Scholar 

  30. Schultz, p.H., Ernst, C.M., and Anderson, J.L.B., 2005, Expectations for crater size and photometric evolution from the deep impact collision: Space Science Review, v. 117, p. 207–239.

    Article  ADS  Google Scholar 

  31. Shuvalov, v., 1999, 3 D hydrodynamic code SOVA for interfacial flows, application to the thermal layer effect: Shock Waves, v. 9, p. 381–390.

    Article  MATH  ADS  Google Scholar 

  32. Shuvalov, v., Dypvik, H., and Tsikalas, F., 2002, Numerical simulations of the Mjolnir marine impact crater, Journal of Geophysical Research-Planets, v. 107, p. 1–12.

    Google Scholar 

  33. Smit, J., 1999, The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta: Annual Review of Earth and Planetary Sciences, v. 27, p.75–113.

    Article  ADS  Google Scholar 

  34. Stoffler, D., Artemieva, N.A., Ivanov, B.A., Hecht, L., Kenkmann, T., Schmitt, R.T., Tagle, R.A., and Wittmann, A., 2004, Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling: Meteoritics & Planetary Science, v. 39, p. 1035–1067.

    Article  ADS  Google Scholar 

  35. Sturkell, E.F.F., and Ormo, J., 1997, Impact-related clastic injections in the marine Ordovician Lockne impact structure, Central Sweden: Sedimentology, v. 44, p. 793–804.

    Article  Google Scholar 

  36. Sugita, S., and 22 others, 2005, Subaru telescope observations of Deep Impact: Science, v. 310, p. 274–278.

    Article  ADS  Google Scholar 

  37. Tsikalas, F., Gudlaugsson, S.T., Eldholm, O., and Faleide, J.I., 1998, Integrated geophysical analysis supporting the impact origin of the Mjølnir structure, Barents Sea: Tectonophysics, v. 289, p. 257–280.

    Article  ADS  Google Scholar 

  38. Ward, S.N., and Asphaug, E., 2000, Asteroid impact tsunami: A probabilistic hazard assessment: Icarus, v. 145, p. 64–78.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Claeys, p. (2009). Impact Cratering on Volatile-rich Targets: Some Remarks Related to the Deep Impact Experiment. In: Käufl, H., Sterken, C. (eds) Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength. Eso Astrophysics Symposia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76959-0_26

Download citation

Publish with us

Policies and ethics