Skip to main content

Numerical Models of the Geodynamo: From Fundamental Cartesian Models to 3D Simulations of Field Reversals

  • Chapter
Geomagnetic Field Variations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton, G., Clement, B., Lund, S., Okada, M., and Williams, T. (1998). Initial paleomagnetic results from ODP leg 172: High resolution geomagnetic field behavior for the last 1.2 Ma. EOS, 79:178–179.

    Google Scholar 

  • Aubert, J., Aurnou, J., and Wicht, J. (2008). The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int., 172:945–956.

    Article  Google Scholar 

  • Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquard, G., Moore, D., Olson, P., Schmeling, H., and Schnaubelt, T. (1989). A benchmark comparison for mantle convection codes. Geophys. J. Int., 98:23–38.

    Article  Google Scholar 

  • Bullard, E. C. and Gellman, H. (1954). Homogeneous dynamos and terrestrial magnetism. Philos. Trans. R. Soc. Lond., A. 247:213–278.

    Article  Google Scholar 

  • Busse, F. and Heikes, K. (1980). Convection in a rotating layer: A simple case of turbulence. Science, 208:173–175.

    Article  Google Scholar 

  • Busse, F. H. and Clever, R. M. (1979). Nonstationary convection in a rotating system, pp. 376–385. Recent developments in theoretical and experimental fluid mechanics: Compressible and incompressible flows. (A79-29651 11-34) Berlin, Springer-Verlag, 1979, pp. 376-385.

    Google Scholar 

  • Cande, S. and Kent, D. (1995). Revised calibration of the geomagnetic polarity timescales for the Late Cretaceous and Cenozoic. Geophys. Res. Lett., 100:6093–6095.

    Google Scholar 

  • Cataneo, F. and Hughes, D. W. (2006). Dynamo action in a rotating convective layer. J. Fluid. Mech., pp. 401–418.

    Google Scholar 

  • Chan, K., Li, L., and Liao, X. (2006). Modelling the core convection using finite element and finite difference methods. Phys. Earth Planet. Int., 157:124–138.

    Article  Google Scholar 

  • Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. Clarendon Press.

    Google Scholar 

  • Childress, S. and Soward, A. (1972). Convection driven hydromagnetic dynamo. Phys. Rev. Lett., 29:837–839.

    Article  Google Scholar 

  • Christensen, U. and Aubert, J. (2006). Scaling properties of convection-driven dynamos in rotating spherical shells and applications to planetary magnetic fields. Geophys. J. Int., 116:97–114.

    Article  Google Scholar 

  • Christensen, U. and Tilgner, A. (2004). Power requirement of the geodynamo from Ohmic losses in numerical and laboratory dynamos. Nature, 429:169–171.

    Article  Google Scholar 

  • Christensen, U. and Wicht, J. (2007). Core Dynamics, chapter Numerical Dynamo Simulations. Treatise on Geophysics. Elsevier.

    Google Scholar 

  • Christensen, U. R. (2006). A deep rooted dynamo for Mercury. Nature, 444:1056–1058.

    Article  Google Scholar 

  • Christensen, U. R., Aubert, J., Busse, F. H., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G. A., Honkura, Y., Jones, C. A., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wicht, J., and Zhang, K. (2001). A numerical dynamo benchmark. Phys. Earth Planet. Int., 128:25–34.

    Article  Google Scholar 

  • Clement, B. (2004). Dependency of the duration of geomagnetic polarity reversals on site latitude. Nature, 428:637–640.

    Article  Google Scholar 

  • Clune, T., Eliott, J., Miesch, M., Toomre, J., and Glatzmaier, G. (1999). Computational aspects of a code to study rotating turbulent convection in spherical shells. Parallel Comp., 25:361–380.

    Article  Google Scholar 

  • Clune, T. and Knobloch, E. (1993). Pattern selection in rotating convection with experimental boundary conditions. Phys. Rev. E, 47:2536–2549.

    Article  Google Scholar 

  • Constable, C. (2000). On the rate of occurence of geomagnetic reversals. Phys. Earth Planet. Int., 118:181–193.

    Article  Google Scholar 

  • Demircan, A., Scheel, S., and Seehafer, N. (2000). Heteroclinic behavior in rotating Rayleigh-Bénard convection. Eur. Phys. J. B, 13.

    Google Scholar 

  • Dormy, E., Cardin, P., and Jault, D. (1998). MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett., 158:15–24.

    Article  Google Scholar 

  • Eltayeb, I. (1972). Hydromagnetic convection in a rapidly rotating fluid layer. Proc. R. Soc. Lond. A., 326:229–254.

    Article  Google Scholar 

  • Eltayeb, I. (1975). Overstable hydromagnetic convection in a rotating fluid layer. J. Fluid Mech., 71:161–179.

    Article  Google Scholar 

  • Fautrelle, Y. and Childress, S. (1982). Convective dynamos with intermediate and strong fields. Geophys. Astrophys. Fluid Dyn., 22:235–279.

    Article  Google Scholar 

  • Fournier, A., Bunge, H.-P., Hollerbach, R., and Vilotte, J.-P. (2005). A Fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers. J. Comp. Phys., 204:462–489.

    Article  Google Scholar 

  • Glassmeier, K.-H., Auster, H.-U., and Motschmann, U. (2007). A feedback dynamo generating Mercury’s magnetic field. Geophys. Res. Lett., 34:22201–22205, doi:10.1029/2007GL031662.

    Article  Google Scholar 

  • Glatzmaier, G. (1984). Numerical simulation of stellar convective dynamos. 1. The model and methods. J. Comput. Phys., 55:461–484.

    Article  Google Scholar 

  • Glatzmaier, G., Coe, R., Hongre, L., and Roberts, P. (1999). The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature, 401:885–890.

    Article  Google Scholar 

  • Glatzmaier, G. and Roberts, P. (1995). A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Int., 91:63–75.

    Article  Google Scholar 

  • Glatzmaier, G. and Roberts, P. (1996). An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Physica D, 97:81–94.

    Article  Google Scholar 

  • Gubbins, D., Alfé, D., Masters, G., Price, G., and Gillan, M. (2004). Gross thermodynamics of 2-component core convection. Geophys. J. Int., 157:1407–1414.

    Article  Google Scholar 

  • Gubbins, D., N., B. C., Gibbons, S., and J., L. J. (2000a). Kinematic dynamo action in a sphere i. effects of differential rotation and meridional circulation on solutions with axial dipole symmetry. Proc. Roy. Soc. Lond., 456:1333–1353.

    Google Scholar 

  • Gubbins, D., N., B. C., Gibbons, S., and J., L. J. (2000b). Kinematic dynamo action in a sphere ii. symmetry selection. Proc. Roy. Soc. Lond., 456:1669–1683.

    Google Scholar 

  • Gubbins, D. and Sarson, G. (1994). Geomagnetic field morphologies from a kinematic dynamo model. Nature, 368:51–55.

    Article  Google Scholar 

  • Harder, H. and Hansen, U. (2005). A finite-volume solution method for thermal convection and dynamo problems in spherical shells. Geophys. J. Int., 161:522–532.

    Article  Google Scholar 

  • Harland, W., Armstrong, R., Cox, A., Craig, L., Smith, A., and Smith, D. (1990). A Geological Time Scale. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hejda, P. and Reshetnyak, M. (2003). Control volume method for the thermal dynamo problem in the sphere with the free rotating inner core. Stud. Geophys. Geod., 47:147–159.

    Article  Google Scholar 

  • Hejda, P. and Reshetnyak, M. (2004). Control volume method for the thermal convection problem in a rotating spherical shell: test on the benchmark solution. Stud. Geophys. Geod., 48:741–746.

    Article  Google Scholar 

  • Hulot, G. and Gallet, Y. (2003). Do superchrons occur without any paleomagnetic warning? Earth Planet. Sci. Lett., 210:191–201.

    Article  Google Scholar 

  • Jackson, A., Jonkers, A., and Walker, M. (2000). Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond., A, 358:957–990.

    Article  Google Scholar 

  • Jones, C. (2000). Convection-driven geodynamo models. Philos. Trans. R. Soc. Lond., A, 358:873–897.

    Article  Google Scholar 

  • Jones, C. and Roberts, P. (2000a). Convection driven dynamos in a rotating plane layer. J. Fluid Mech., 404:311–343.

    Article  Google Scholar 

  • Jones, C. and Roberts, P. (2000b). The onset of magnetoconvection at large Prandtl number in a rotating layer II. Small magnetic diffusion. Geophys. Astrophys. Fluid Dyn., 93:173–226.

    Article  Google Scholar 

  • Jonkers, A. (2003). Long-range dependence in the cenozoic reversal record. Phys. Earth Planet. Int., 135:253–266.

    Article  Google Scholar 

  • Julien, K., Legg, S., McWilliams, J., and Werne, J. (1996). Rapidly rotating turbulent Rayleigh-Bénard convection. J. Fluid Mech., 322:243–272.

    Article  Google Scholar 

  • Kageyama, A. and Watanabe, K. and Sato, T. (1993). Simulation study of a magnetohydrodynamic dynamo: Convection in a rotating shell. Phys. Fluids, B24:2793–2806.

    Article  Google Scholar 

  • Kageyama, A. and Sato, T. (1997c). Generation mechanism of a dipole field by a magnetohydrodynamic dynamo. Phys. Rev. E, 55:4617–4626.

    Article  Google Scholar 

  • Kageyama, A. and Yoshida, M. (2005). Geodynamo and mantle convection simulations on the Earth simulator using the Yin-Yang grid. J. Phys.: Conf. Ser., 16:325–338.

    Article  Google Scholar 

  • Kono, M. and Roberts, P. (2001). Definition of the Rayleigh number for geodynamo simulation. Phys. Earth Planet. Int., 128:13–24.

    Article  Google Scholar 

  • Krause, F. and Rädler, K. (1980). Mean-Field Magnetohydrodynamics and Dynamo Theory. Akademie-Verlag, Berlin.

    Google Scholar 

  • Kuang, W. and Bloxham, J. (1999). Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong field dynamo action. J. Comp. Phys., 153:51–81.

    Article  Google Scholar 

  • Kutzner, C. and Christensen, U. (2000). Effects of driving mechanisms in geodynamo models. Geophys. Res. Lett., 27:29–32.

    Article  Google Scholar 

  • Kutzner, C. and Christensen, U. (2002). From stable dipolar to reversing numerical dynamos. Phys. Earth Planet. Int., 131:29–45.

    Article  Google Scholar 

  • Kutzner, C. and Christensen, U. (2004). Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys. J. Int., 157:1105–1118.

    Article  Google Scholar 

  • Leonhardt, R., Matzka, J., Hufenbecher, F., and Soffel, H. (2002). A reversal of the Earth’s magnetic field recorded in mid-Miocene lava flows of Gran Canaria: Paleodirections. J. Geophys. Res., 107:DOI 10.1029/2001JB000322.

    Google Scholar 

  • Lister, J. and Buffett, B. (1995). The strength and efficiency of thermal and compositional convection n the geodynamo. Phys. Earth Planet. Int., 91:17–30.

    Article  Google Scholar 

  • Love, J. (1998). Paleomagnetic volcanic data and geomagnetic regularity of reversals and excursions. J. Geophys. Res., 103(B6):12435–12452.

    Article  Google Scholar 

  • Lund, S., Haskell, B., and Johnson, T. (1989). Paleomagnetic secular variation records for the last 100,000 years from deep sea sediments of the northwest Atlantic Ocean. EOS, 70:1073.

    Google Scholar 

  • Lund, S., Williams, T., Acton, G., Clement, D., and Okada, M. (2001). Brunes chron magnetic field excursions recovered from leg 172 sediments. In Keigwin, L., Acton, D., and Arnold, E., editors, Proceedings of the Ocean Drilling Program, Scientific Results, Volume 172.

    Google Scholar 

  • Mauersberger, P. (1956) Das Mittel der Energiedichte des geomagnetischen Hauptfeldes and der Erdoberfläche und seine säkulare änderung. Gerlands Beitr. Geophys., 65:207–215.

    Google Scholar 

  • Matsui, H. and Okuda, H. (2005). Mhd dynamo simulation using the GeoFEM platform - verification by the dynamo benchmark test. Int. J. Comput. Fluid Dyn., 19:15–22.

    Article  Google Scholar 

  • Maus, S., Rother, M., Stolle, C., Mai, W., Choi, S., Lühr, H., Cooke, D., and Roth, C. (2006). Third generation of the Potsdam Magnetic Model of the Earth (POMME). Geochem. Geophys. Geosyst., 7:7008.

    Article  Google Scholar 

  • Olson, P. and Amit, H. (2006). Changes in Earth’s dipole. Naturwissenschaften., 93:519–542.

    Article  Google Scholar 

  • Olson, P. and Christensen, U. (2006). Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett., 250:561–571.

    Article  Google Scholar 

  • Olson, P., Christensen, U., and Glatzmaier, G. (1999). Numerical modeling of the geodynamo: Mechanism of field generation and equilibration. J. Geophys. Res., 104:10,383–10,404.

    Google Scholar 

  • Roberts, P. and Jones, C. (2000). The onset of magnetoconvection at large Prandtl number in a rotating layer I. Finite magnetic diffusion. Geophs. Astrophys. Fluid Dyn., 92:289–325.

    Article  Google Scholar 

  • Rotvig, J. and Jones, C. (2002). Rotating convection-driven dynamos at low ekman number. Phys. Rev. E., 66:DOI:056308.

    Google Scholar 

  • Sarson, G. and Jones, C. (1999). A convection driven geodynamo reversal model. Phys. Earth Planet. Int., 111:3–20.

    Article  Google Scholar 

  • Singer, B., Hoffman, K., Coe, R., Brown, L., Jicha, B., Pringle, M., and Chauvin, A. (2005). Structural and temporal requirements for geomagnetic field reversals deduced from lava flows. Nature, 434:633–636.

    Article  Google Scholar 

  • Soward, A. (1974). A convection driven dynamo I: The weak field case. Phil. Trans. R. Soc. Lond. A, 275:611–651.

    Article  Google Scholar 

  • St. Pierre, M. (1993). The strong-field branch of the Childress-Soward dynamo. In Proctor, M. R. E. et al., editors, Solar and Planetary Dynamos, pp. 329–337.

    Google Scholar 

  • Stanley, S. and Bloxham, J. (2004). Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature, 428:151–153.

    Article  Google Scholar 

  • Stanley, S., Bloxham, J., Hutchison, W., and Zuber, M. (2005). Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett., 234:341–353.

    Article  Google Scholar 

  • Stellmach, S. and Hansen, U. (2004). Cartesian convection-driven dynamos at low Ekman number. Phys. Rev. E, 70:056312.

    Article  Google Scholar 

  • Takahashi, F. and Matsushima, M. (2006). Dipolar and non-dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury. Geophys. Res. Lett., 33:L10202.

    Article  Google Scholar 

  • Vorobieff, P. and Ecke, E. (2002). Turbulent rotating convection: an experimental study. J. Fluid Mech., 458:191–218.

    Article  Google Scholar 

  • Wicht, J. (2002). Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Int., 132:281–302.

    Article  Google Scholar 

  • Wicht, J. (2005). Palaeomagnetic interpretation of dynamo simulations. GeoPhys. J. Int., 162:371–380.

    Article  Google Scholar 

  • Wicht, J. and Aubert, J. (2005). Dynamos in action. GWDG-Bericht, 68:49–66.

    Google Scholar 

  • Wicht, J., Mandea, M., Takahashi, F., Christensen, U., Matsushima, M., and Langlais, B. (2007). The origin of Mercury’s internal magnetic field. Space Sci. Rev., 132:261–290.

    Article  Google Scholar 

  • Wicht, J. and Olson, P. (2004). A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geochem., Geophys,. Geosyst., 5:doi:10.1029/2003GC000602.

    Google Scholar 

  • Willis, A. and Gubbins, D. (2004). Kinematic dynamo action in a sphere: Effects of periodic time-dependent flows on solutions with axial dipole symmetry. Geophys. Astrophys. Fluid. Dyn., 98(6):537–554.

    Article  Google Scholar 

  • Zhang, K.-K. and Busse, F. (1988). Finite amplitude convection and magnetic field generation in in a rotating spherical shell. Geophys. Astrophys. Fluid. Dyn., 44:33–53.

    Article  Google Scholar 

  • Zhang, K.-K. and Busse, F. (1989). Convection driven magnetohydrodynamic dynamos in rotating spherical shells. Geophys. Astrophys. Fluid. Dyn., 49:97–116.

    Article  Google Scholar 

  • Zhang, K.-K. and Busse, F. (1990). Generation of magnetic fields by convection in a rotating spherical fluid shell of infinite Prandtl number. Phys. Earth Planet. Int., 59:208–222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wicht, J., Stellmach, S., Harder, H. (2009). Numerical Models of the Geodynamo: From Fundamental Cartesian Models to 3D Simulations of Field Reversals. In: Geomagnetic Field Variations. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76939-2_4

Download citation

Publish with us

Policies and ethics