Skip to main content

Records of Paleomagnetic Field Variations

  • Chapter
Geomagnetic Field Variations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, M. J., Allsop, A. L., Bussell, G. D., and Winter, M. B. (1988). Determination of the intensity of the Earth’s magnetic field during archaeological times: reliability of the Thellier technique. Rev. Geophys., 26:3–12.

    Article  Google Scholar 

  • Amerigian, C. (1977). Measurement of the effect of particle size variation on the detrital remanent magnetization to anhysteretic remanent magnetization ratio in some abyssal sediments. Earth Planet. Sci. Lett., 36:434–442.

    Article  Google Scholar 

  • Bol’shakov, A. and Solodovnikov, G. (1981). Intensity of the geomagnetic field in the last 400 million years. Doklady Earth Sci. Sections, 260:24–27.

    Google Scholar 

  • Carlut, J. and Courtillot, V. (1998). How complex is the time-averaged geomagnetic field over the past 5 Myr? Geophys. J. Int., 134:527–544.

    Article  Google Scholar 

  • Channell, J. (1999). Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) Site 984 (Bjorn Drift) since 500 ka: Comparisons with ODP Site 983 (Gardar Drift). J. Geophys. Res., 104(B10):22937–22951.

    Article  Google Scholar 

  • Channell, J., Valet, J.-P., Hodell, D., and Charles, C. (2000). Geomagnetic paleointensity from late Brunhes-age piston cores from the subantarctic South Atlantic. Earth Planet. Sci. Lett., 175:145–160.

    Article  Google Scholar 

  • Clement, B. (1991). Geographical distribution of transitional VGPs: Evidence for nonzonal equatorial symmetry during the Brunhes-Matuyama geomagnetic reversal. Earth Planet. Sci. Lett., 29:48–58.

    Article  Google Scholar 

  • Coe, R. (1967a). Paleo-intensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res., 72:3247–3262.

    Article  Google Scholar 

  • Coe, R. S. (1967b). Palaeointensity of the Earth’s magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res., 72:3247–3262.

    Article  Google Scholar 

  • Coe, R. S. (1974). The effect of magnetic interactions on paleointensity determinations by the Thelliers’ method. J. Geomag. Geoelectr., 26:311–317.

    Google Scholar 

  • Coe, R. S., Hongre, L., and Glatzmaier, G. A. (2000). An examination of simulated geomagnetic reversals from a palaeomagnetic perspective. Philos. Trans. R. Soc. Lond., 358:1141–1170.

    Article  Google Scholar 

  • Coe, R. S., Singer, B. S., Pringle, M. S., and Zhao, X. (2004a). Matuyama-Brunhes reversal and Kamikatsura event on Maui: paleo-magnetic directions, 40Ar/39Ar ages and implications. Earth Planet. Sci. Lett., 222:667–684.

    Article  Google Scholar 

  • Coe, R. S., Rijsager, J., Plenier, G., Leonhardt, R., and Krása, D. (2004b). Multidomain behaviour durinh Thellier paleointensity experiments: Results from the 1915 Mt. Lassen flow. Earth. Planet. Sci. Lett., 247:141–153.

    Google Scholar 

  • Dekkers, M. J. and Boehnel, H. (2006) Reliable absolute paleo-intensities independent of magnetic domian state. Earth Planet. Sci. Lett., 248:507–5016.

    Article  Google Scholar 

  • Dodson, M. H. and McClelland-Brown, E. (1980). Magnetic blocking temperatures of single-domain grains during slow cooling. J. Geophys. Res., 85:2625–2637.

    Article  Google Scholar 

  • Dunlop, D. (1973). Superparamagnetic and single-domain threshold sizes in magnetite. J. Geophys. Res., 78:1780–1793.

    Article  Google Scholar 

  • Dunlop, D. J. and Özdemir, Ö. (2000). Effect of grain size and domain state on thermal demagnetization tails. Geophys. Res. Lett., 27:1311–1314.

    Article  Google Scholar 

  • Fabian, K. (2001). A theoretical treatment of paleointensity determination experiments on rocks containing pseudo-single or multi domain magnetic particles. Earth Planet. Sci. Lett., 188:45–58.

    Article  Google Scholar 

  • Fabian, K. and Shcherbakov, V. P. (2004). Domain state stabilization by iterated thermal magnetization processes. Geophys. J. Int., 159:486–494.

    Article  Google Scholar 

  • Fox, J. M. W. and Aitken, M. J. (1980). Cooling-rate dependency of thermoremanent magnetisation. Nature, 283:462–463.

    Article  Google Scholar 

  • Glatzmaier, G. A., Coe, R. S., Hongre, L., and Roberts, P. H. (1999). The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature, 401(6756):885–890.

    Article  Google Scholar 

  • Gubbins, D. and Kelly, P. (1993). Persistent patterns in the geomagnetic field over the past 2.5 myr. Nature, 365:829–832.

    Article  Google Scholar 

  • Guillou, H., Singer, B., Laj, C., Kissel, C., Scaillet, S., and Jicha, B. (2004). On the age of the Laschamp geomagnetic excursion. Earth Planet. Sci. Lett., 227:331–343.

    Article  Google Scholar 

  • Gurevitsch, E. L., Heuneman, C., Radk’ko, V., Westphal, M., Bachtadse, V., Pozzi, J. P., Feinberg, H. (2004). Paleomagneism and magnetostratigraphy of the Permian-Triassic Sibirian trap basalts. Tectonophysics, 379:211–226.

    Article  Google Scholar 

  • Guyodo, Y. and Valet, J.-P. (1999). Global changes in the intensity of the Earth’s magnetic field during the past 800 kyr. Nature, 399:249–252.

    Article  Google Scholar 

  • Haag, M. (2000). Reliability of relative palaeointensities of a sediment core with climatically-triggered strong magnetisation changes. Earth Planet. Sci. Lett., 180:49–59.

    Article  Google Scholar 

  • Halgedahl, S. and Fuller, M. (1980). Magnetic domain observations of nucleation processes in fine particles of intermediate titanomagnetite. Nature, 288:70–72.

    Article  Google Scholar 

  • Harrison, C. G. A. (1966). The paleo-magnetism of deep-sea sediments. J. Geophys. Res., 71:3033–3043.

    Google Scholar 

  • Harrison, C. G. A. and B. L. K. Somayajulu (1966). Behaviour of the Earth’s magnetic field during a reversal. Nature, 212:1193–1195.

    Article  Google Scholar 

  • Hatakeyama, T. and Kono, M. (2002). Geomagnetic field model for the last 5 my: time-averaged field and secular variation. Phys. Earth Planet. Inter., 133:181–215.

    Article  Google Scholar 

  • Heller, R., Merrill, R. T., and McFadden, P. L. (2002). The variation of intensity of the Earth’s magnetic field with time. Phys. Earth Planet. Inter., 131:237–249.

    Article  Google Scholar 

  • Heller, R., Merrill, R. T., and McFadden, P. L. (2003). The two states of paleo-magnetic field intensities for the past 320 million years. Phys. Earth Planet. Inter., 135:211–223.

    Article  Google Scholar 

  • Henkel, O. (1964). Remanenzverhalten und Wechselwirkung in hartmagnetischen Teilchenkollektiven. Phys. Stat. Sol., 7:919–929.

    Article  Google Scholar 

  • Heunemann, C., Krása, D., Soffel, H. C., Gurevitch, E., and Bachtadse, V. (2004). Directions and intensities of the Earth’s magnetic field during a reversal: results from the Permo-Triassic Sibirian trap basalts, Russia. Earth Planet. Sci. Lett., 218:197–213.

    Article  Google Scholar 

  • Hillhouse, J. and Cox, A. (1976). Brunhes-Matuyama polarity transition. Earth Planet. Sci. Lett., 29:51–64.

    Article  Google Scholar 

  • Hoffman, K. A. (1981). Palaeomagnetic excursions, aborted reversals and transitional fields. Nature, 294:67–69.

    Article  Google Scholar 

  • Hoffman, K. A. (1992). Dipolar reversal states of the geomagnetic field and core mantle dynamics. Nature, 359:789–794.

    Article  Google Scholar 

  • Hoffman, K. A. (1996). Transitional paleo-magnetic field behavior: Preferred paths or patches? Surv. Geophys., 17:207–211.

    Article  Google Scholar 

  • Hofmann, D., Fabian, K., Schmieder, F., and Donner, B. (2005). A stratigraphic network from the subtropical and subantarctic South Atlantic: Multiparameter correlation of magnetic susceptibility,bulk density, X-ray fluorescence measurements and δ18O. Earth Planet. Sci. Lett., 240:694–709.

    Article  Google Scholar 

  • Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., editors, Milankovitch and Climate: Understanding the Response to Orbital Forcing, pp. 269–305. Reidel Publishing, Dordrecht.

    Google Scholar 

  • Johnson, C. L. and Constable, C. G. (1997). The time-averaged geomagnetic field: global and regional biases for 0-5 Ma. Geophys. J. Int., 131:643–666.

    Article  Google Scholar 

  • Johnson, E. A., Murphy, T., and Torreson, O. W. (1948). Pre-history of the Earth’s magnetic field. Terr. Mag. Atmos. Elec., 53:349–372.

    Article  Google Scholar 

  • Johnson, H. P., Kinoshita, H., and Merrill, R. T. (1975). Rock magnetism and paleo-magnetism of some North Pacific deep-sea sediments. Geol. Soc. Am. Bull., 86:412–420.

    Article  Google Scholar 

  • Juárez, M. T., Tauxe, L., Gee, J. S., and Pick, T. (1998). The intensity of the Earth’s magnetic field over the past 160 million years. Nature, 394:878–881.

    Article  Google Scholar 

  • Katari, K. and Bloxham, J. (2001). Effects of sediment aggregate size on DRM intensity :A new theory. Earth Planet. Sci. Lett., 186:113–122.

    Article  Google Scholar 

  • King, J. W., Banerjee, S. K., and Marvin, J. A. (1983). A new rock magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years. J. Geophys. Res., 88:5911–5921.

    Article  Google Scholar 

  • Kono, M. and Hiroi, O. (1996). Paleosecular variation of field intensites and dipole moments. Earth Planet. Sci. Lett., 139:251–262.

    Article  Google Scholar 

  • Krása, D., Heunemann, C., Leonhardt, R., and Petersen, N. (2003). Experimental procedure to detect multidomain remanence during thellier-thellier experiments. Phys. Chem. Earth, 28:681–687.

    Google Scholar 

  • Krása, D., Shcherbakov, V. P., Kunzmann, T., and Petersen, N. (2005). Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites. Geophys. J. Int., 162:115–136.

    Article  Google Scholar 

  • Laj, C., Kissel, C., Mazaud, A., Channell, J., and Beer, J. (2000). North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Phil. Trans. Roy. Soc., 3358:1009–1025.

    Google Scholar 

  • Laj, C., Mazaud, A., Weeks, R., Fuller, M., and Herrero-Bevera, E. (1991). Geomagnetic reversal paths. Nature, 351:447.

    Article  Google Scholar 

  • Langereis, C., Dekkers, M., de Lange, G., Paterne, M., and van Santvoort, P. (1997). Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int., 129:75–94.

    Article  Google Scholar 

  • Leonhardt, R. (2006). Analyzing rock magnetic measurements: The Rockmaganalyzer 1.0 software. Comp. Geosci., 32, 1420–1431.

    Article  Google Scholar 

  • Leonhardt, R. and Fabian, K. (2007). Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama-Brunhes transition: Iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett., 253:172–195.

    Article  Google Scholar 

  • Leonhardt, R., Hufenbecher, F., Heider, F., and Soffel, H. C. (2000). High absolute paleointensity during a mid Miocene excursion of the Earth’s magnetic field. Earth Planet. Sci. Lett., 184:141–154.

    Article  Google Scholar 

  • Leonhardt, R., Matzka, J., Hufenbecher, F., Heider, F., and Soffel, H. (2002). A reversal of the Earth’s magnetic field recorded in mid Miocene lava flows of Gran Canaria: Paleodirections. J. Geophys. Res., 107(B1):2024, doi:10.1029/2001JB000322.

    Article  Google Scholar 

  • Leonhardt, R., Matzka, J., and Menor, E. A. (2003). Absolute paleo-intensities and paleo-directions from Fernando de Noronha, Brazil. Phys. Earth Planet. Inter., 139:285–303.

    Article  Google Scholar 

  • Leonhardt, R., Heunemann, C., and Krása, D. (2004a). Analyzing absolute paleointensity determinations: Acceptance criteria and the software Thelliertool4.0. 5:Q12016, doi:10.1029/2004GC000807.

    Google Scholar 

  • Leonhardt, R., Krása, D., and Coe, R. S. (2004b). Multidomain behavior during Thellier paleointensity experiments: A phenomenological model. Phys. Earth Planet. Inter., 147:127–140.

    Article  Google Scholar 

  • Leonhardt, R., Matzka, J., Nichols, A., and Dingwell, D. (2006). Cooling rate correction of paleointensity determination for volcanic glasses by relaxation geospeedometry. Earth Planet. Sci. Lett., 243:282–292.

    Article  Google Scholar 

  • Leonhardt, R. and Soffel, H. C. (2002). A reversal of the Earth’s magnetic field recorded in mid Miocene lava flows of Gran Canaria: Paleointensities. J. Geophys. Res., 107(B11):2299, doi:10.1029/2001JB000949.

    Article  Google Scholar 

  • Leonhardt, R. and Soffel, H. C. (2006). The growth, collapse and quiescence of Teno volcano, Tenerife: new constraints from paleo-magnetic data. Int. J. Earth Sci. (Geol. Rundsch.), 95:1053–1064.

    Article  Google Scholar 

  • Levi, S. (1977). The effect of magnetite particle size on paleointensity determinations of the geomagnetic field. Phys. Earth Planet. Inter., 13:245–259.

    Article  Google Scholar 

  • Levi, S. and Banerjee, S. K. (1976). On the possibility of obtaining relative paleo-intensities from lake sediments. Earth Planet. Sci. Lett., 29:219–226.

    Article  Google Scholar 

  • Lund, S., Stoner, J., Channell, J., and Acton, G. (2006). A summary of Brunhes paleo-magnetic field variability recorded in Ocean Drilling Program cores. Phys. Earth Planet. Inter., 156:194–204.

    Article  Google Scholar 

  • Martinson, D., Pisias, N., Hays, J., Imbrie, J., Moore, T.C., J., and Shackleton, N. (1987). Age dating and the orbital theory of the ice ages of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27:1–29.

    Article  Google Scholar 

  • Mazaud, A., Sicre, M., Ezat, U., Pichon, J., Duprat, J., Laj, C., Kissel, C., Beaufort, L., Michel, E., and Turon, J. (2002). Geomagnetic-assisted stratigraphy and sea surface temperature changes in core MD94-103 (Southern Indian Ocean): possible implications for North-South climatic relationships around H4. Earth Planet. Sci. Lett., 201:159–170.

    Article  Google Scholar 

  • McClelland-Brown, E. (1984). Experiments on trm intensity dependence on cooling rate. Geophys. Res. Lett., 11:205–208.

    Article  Google Scholar 

  • McElhinny, M. W. and Lock, J. (1996). IAGA paleo-magnetic databases with access. Surv. Geophys., 17:575–591.

    Article  Google Scholar 

  • Néel, L. (1949). Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys., 5:99–136.

    Google Scholar 

  • Nowaczyk, N. and Baumann, M. (1992). Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for late Quaternary Arctic Ocean sediments. Deep Sea Res., 39:567–601.

    Article  Google Scholar 

  • Nowaczyk, N. R. and Knies, J. (2000) Magnetostratigraphic results from Eastern Artic Ocean-AMS14C ages and relative paleointensity data of the Mono Lake and Laschamp geomagnetic events. Geophys. J. Int., 140:185–197.

    Article  Google Scholar 

  • Nowaczyk. N. R., Antonow, M., Knies, J., Spielhagen, R. F. (2003) Further magnetostratigraphic results on reversal excursions during the last 50 ka derived from northern high latitudes and discrepancies in their precise AMS14C dating. Geophys. J. Int., 155:1065–1080.

    Article  Google Scholar 

  • Opdyke, N. D. and Channell, J. E. T. (1996). Magnetic Stratigraphy. Academic Press, International Geophysics Series, Volume 64, San Diego, USA.

    Book  Google Scholar 

  • Otofuji, Y. and Sasajima, S. (1981). A magnetization process of sediments: laboratory experiments on post-depositional remanent magnetization. GeoPhys. J. R. Astr. Soc., 66:241–259.

    Google Scholar 

  • Perrin, M. and Shcherbakov, V. (1997). Paleointensity of the Earth’s magnetic field for the past 400 ma: Evidence for a dipole structure during the mesozoic low. J. Geomag. Geoelectr., 49:601–614.

    Google Scholar 

  • Piper, J. D. A. and Richardson, A. (1972). The palaeomagnetism of the Gulf of Guinea volcanic province, West Africa. Geophys. J. R. Astr. Soc., 29:147–171.

    Google Scholar 

  • Prévot, M. and Camps, P. (1993). Absence of preferred longitude sectors for poles from volcanic records of geomagnetic reversals. Nature, 366:53–57.

    Article  Google Scholar 

  • Prévot, M., Derder, M., McWilliams, M., and Thompson, J. (1990). Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low. Earth Planet. Sci. Lett., 97:129–139.

    Article  Google Scholar 

  • Reid, J. (1989). On the total geostrophic circulation of the South Atlantic Ocean: Flow patterns, tracers, and transports. Prog. Oceanog., 23:149–244.

    Article  Google Scholar 

  • Richardson, A. and Watkins, N. D. (1967). Paleomagnetism of Atlantic islands: Fernando Noroñha. Nature, 215:1470–1473.

    Article  Google Scholar 

  • Riisager, P. and Riisager, J. (2001). Detecting multidomain magnetic grains in Thellier paleointensity experiments. Phys. Earth Planet. Inter., 125:111–117.

    Article  Google Scholar 

  • Roberts, A. P. and Winklhofer, M. (2005) Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling. Earth Planet. Sci. Lett., 227:345–359.

    Article  Google Scholar 

  • Schmieder, F. (2004). Magnetic signals in Plio-Pleistocene sediments of the South Atlantic: Chronostratigraphic usability and paleo-ceanographic implication. In Wefer, G., Mulitza, S., and Ratmeyer, V., editors, The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems/, pp. 269–305. Springer-Verlag, Berlin.

    Google Scholar 

  • Schult, A., Calvo Rathert, M., Guerreiro, S., and Bloch, W. (1986). Paleomagnetism and rock magnetism of Fernando de Noronha, brazil. Earth Planet. Sci. Lett., 79:208–216.

    Article  Google Scholar 

  • Selkin, P. A. and Tauxe, L. (2000). Long-term variations in paleointensity. Philos. Trans. R. Soc., 358:1065–1088.

    Article  Google Scholar 

  • Shaw, J. (1974). A new method of determining the magnetide of the paleo-magnetic field: Application to five historic lavas and five archeological samples. Geophys. J. R. Astr. Soc., 39:133–141.

    Google Scholar 

  • Shcherbakov, V. P. and Shcherbakova, V. V. (1987). On the physics of post-depositional remanent magnetization. Phys. Earth Planet. Inter., 46:64–70.

    Article  Google Scholar 

  • Shcherbakov, V. P., Solodovnikov, G. M., and Sycheva, N. K. (2002). Variations in the geomagnetic dipole during the past 400 million years (volcanic rocks). Phys. Solid Earth, 38:113–119.

    Google Scholar 

  • Stacey, F. D. (1972). On the role of Brownian motion in the control of detrital remanent magnetization in sediments. Pure Appl. Geophys., 98:139–145. IRM library.

    Article  Google Scholar 

  • Stoner, J., Channell, J., Hodell, D., and Charles, C. (2003). A ∼580 kyr paleo-magnetic record from the sub-Antarctic South Atlantic (Ocean drilling Program Site 1089). J. Geophys. Res., 108:doi:10.1029/2001JB001390.

    Google Scholar 

  • Stoner, J., Laj, C., Channell, J., and Kissel, C. (2002). South Atlantic and North Atlantic geomagnetic paleointensity stacks (0- 80 ka): implications for inter-hemispheric correlation. Quat. Sci. Rev., 21:1141–1151.

    Article  Google Scholar 

  • Stramma, L. and England, M. (1999). On the water masses and mean circulation of the South Atlantic Ocean. J. Geophys. Res., 104(C9):20863–20883.

    Article  Google Scholar 

  • Stramma, L. and Peterson, R. (1990). The South Atlantic current. J. Phys. Ocean., 20:846–859.

    Article  Google Scholar 

  • Talley, L. (1996). Antarctic intermediate water in the South Atlantic. In Wefer, G., Berger, W., Siedler, G., and Webb, D., editors, The South Atlantic: Present and Past Circulation /, pp. 219–238. Springer Verlag, Berlin.

    Google Scholar 

  • Tanaka, H., Kono, M., and Uchimura, H. (1995). Some global features of palaeointensity in geological time. Geophys. J. Int., 120:883–896.

    Article  Google Scholar 

  • Tarduno, J. A. and Smirnov, A. V. (2001). Stability of the earth with respect to the spin axis for the last 130 million years. Earth Planet. Sci. Lett., 184:549–553.

    Article  Google Scholar 

  • Tauxe, L. (1993). Sedimentary records of relative paleointensity: Theory and practice. Rev. Geophys., 31:319–354.

    Article  Google Scholar 

  • Thellier, E. (1941). Sur la vérification d’une méthode permettant de déterminer l’intensité du champ magnétique terrestre dans le passé. C. R. Acad. Sci., 212:281–283.

    Google Scholar 

  • Thellier, E. and Thellier, O. (1959). Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Géophysique, 15:285–376.

    Google Scholar 

  • Theyer, F., Herrero-Bervera, E., and Hsu, V. (1985). The zonal harmonic model of polarity transitions: a test using successive reversals. J. Geophys. Res., 90:1963–1982.

    Article  Google Scholar 

  • Thouveny, N., Carcaillet, J., Moreno, E., Leduc, G., and Nerini, D. (2004). Geomagnetic moment variation and paleo-magnetic excursions since 4000 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin. Earth Planet. Sci. Lett, 219:377–396.

    Article  Google Scholar 

  • Thouveny, N., Creer, K., and Blunk, I. (1990). Extension of the Lac du Bouchet palaeomagnetic record over the last 120000 years. Earth Planet. Sci. Lett., 97:140–161.

    Article  Google Scholar 

  • Thouveny, N., Creer, K., and Williamson, D. (1993). Geomagnetic moment variations in the last 70000 years, impact on production of cosmogenic isotopes. Glob. Planet. Change, 7:157–172.

    Article  Google Scholar 

  • Tucker, P. (1980). Stirred remanent magnetization: a laboratory analogue of post-depositional realignment. J. Geophys., 48:153–157.

    Google Scholar 

  • Tucker, P. (1981a). Low-temperature magnetic hysteresis properties of multidomain single-crystal titanomagnetite. Earth Planet. Sci. Lett., 54:167–172.

    Article  Google Scholar 

  • Tucker, P. (1981b). Paleointensities from sediments: normalization by laboratory redepositions. Earth Planet. Sci. Lett., 56:398–404.

    Article  Google Scholar 

  • Valet, J.-P., Brassat, J., Quidelleur, X., Soler, V., Gillot, P.-Y., and Hongre, L. (1999). Paleointensity variations across the last geomagnetic reversal at La Palma, Canary Islands, Spain. J. Geophys. Res., 104:7577–7598.

    Article  Google Scholar 

  • Valet, J.-P. and Herrero-Bervera, E. (2003). Some characteristics of geomagnetic reversals inferred from detailed volcanic records. Compt. Ren. Geosci., 335:79–90.

    Article  Google Scholar 

  • Valet, J.-P., Tucholka, P., Courtillot, V. E., and Meynadier, L. (1992). Palaeomagnetic constraints on the geometry of the geomagnetic field during reversals. Nature, 356:400–407.

    Article  Google Scholar 

  • van Vreumingen, M. J. (1993a). The influence of salinity and flocculation upon the acquisition of remanent magnetization in some artificial sediments. Geophys. J. Int., 114:607–614.

    Article  Google Scholar 

  • van Vreumingen, M. J. (1993b). The magnetization intensity of some artificial suspensions while flocculating in a magnetic field. Geophys. J. Int., 114:601–606.

    Article  Google Scholar 

  • Veitch, R. J., Hedley, I. G., and Wagner, J.-J. (1984). An investigation of the intensity of the geomagnetic field during Roman times using magnetically anisotropic bricks and tiles. Arch. Sc. Genéve, 37:359–373.

    Google Scholar 

  • von Dobeneck, T. and Schmieder, F. (1999). Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super- and sub-Milankovitch Bands. In Fischer, G. and Wefer, G., editors, Use of Proxies in Paleo-ceanography: Examples from the South Atlantic/, pp. 601–633. Springer-Verlag, Berlin.

    Google Scholar 

  • Wefer, G. and cruise participants (2001). Report and preliminary results of Meteor Cruise M46/4, Mar del Plata (Argentinia)-Salvador da Bahia (Brazil), February 10- March 13, 2000. With partial results of Meteor cruise M46/2. Berichte, FB Geowissenschaften, Universität Bremen, 173.

    Google Scholar 

  • Wehland, F., Leonhardt, R., Vadeboin, F., and Appel, E. (2005) Magnetic interaction analysis of basaltic samples and preselection for absolute paleointensity measurements. Geophys. J. Int., 162:315–320.

    Article  Google Scholar 

  • Williams, I. and Fuller, M. (1981). Zonal harmonic models of reversal transition fields. J. Geophys. Res., 86(B12):11657–11665.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fabian, K., Leonhardt, R. (2009). Records of Paleomagnetic Field Variations. In: Geomagnetic Field Variations. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76939-2_3

Download citation

Publish with us

Policies and ethics