Skip to main content

Optical Properties of Dust

  • Chapter
  • First Online:
Small Bodies in Planetary Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 758))

Abstract

Except in a few cases, cosmic dust can be studied in situ or in terrestrial laboratories, essentially all of our information concerning the nature of cosmic dust depends on its interaction with electromagnetic radiation. This chapter presents the theoretical basis for describing the optical properties of dust—how it absorbs and scatters starlight and reradiates the absorbed energy at longer wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.N. Aguirre:Intergalactic dust and observations of type IA supernovae, Astrophys. J.512, L19 (1999)

    Article  ADS  Google Scholar 

  2. A.C. Andersen, H. Mutschke, T. Posch, M. Min and A. Tamanai:Infrared extinction by homogeneous particle aggregates of SiC, FeO and SiO_2: comparison of different theoretical approaches, J. Quant. Spectrosc. Radiat. Transfer100, 4 (2006)

    Article  ADS  Google Scholar 

  3. S. Asano and M. Sato:Light scattering by randomly oriented spheroidal particles, Appl. Opt.19, 962 (1980)

    Article  ADS  Google Scholar 

  4. S. Asano and G. Yamamoto:Light scattering by a spheroidal particle, Appl. Opt.14, 29 (1975)

    ADS  Google Scholar 

  5. P. Barber and C. Yeh:Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies, Appl. Opt.14, 2864 (1975)

    Article  ADS  Google Scholar 

  6. C.F. Bohren and D. R. Huffman:Absorption and Scattering of Light by Small Particles, Wiley, New York, (1983)

    Google Scholar 

  7. D.E. Brownlee, et al.:Comet 81P/Wild 2 under a microscope, Science314, 1711 (2006)

    Article  ADS  Google Scholar 

  8. D.D. Clayton and L.R. Nittler:Astrophysics with presolar stardust, Ann. Rev. Astro. Astrophys.42, 39 (2004)

    Article  ADS  Google Scholar 

  9. E.A. Coronado and G.C. Schatz:Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach, J. Chem. Phys.119, 3926 (2003)

    Article  ADS  Google Scholar 

  10. B.T. Draine:The discrete-dipole approximation and its application to interstellar graphite grains, Astrophys. J.333, 848 (1988)

    Article  ADS  Google Scholar 

  11. B.T. Draine:Evolution of Interstellar Dust, In ASP Conf. Ser. 12, The Evolution of the Interstellar Medium, L. Blitz (Ed.) (ASP, San Francisco, 1990), 193

    Google Scholar 

  12. B.T. Draine:Scattering by interstellar dust grains. I. optical and ultraviolet, Astrophys. J.598, 1017 (2003)

    Article  ADS  Google Scholar 

  13. B.T. Draine and H.M. Lee:Optical properties of interstellar graphite and silicate grains, Astrophys. J.285, 89 (1984)

    Article  ADS  Google Scholar 

  14. B.T. Draine and J.C. Tan:The scattered X-ray halo around nova cygni 1992: testing a model for interstellar dust, Astrophys. J.594, 347 (2003)

    Article  ADS  Google Scholar 

  15. E. Dwek:Galactic center extinction: evidence of metallic needles in the general interstellar medium, Astrophys. J.611, L109 (2004a)

    Article  ADS  Google Scholar 

  16. E. Dwek:The detection of cold dust in cassiopeia A: evidence for the formation of metallic needles in the ejecta, Astrophys. J.607, 848 (2004b)

    Article  ADS  Google Scholar 

  17. D. Fabian, Th. Henning, C. Jäger, H. Mutschke, J. Dorschner and O. Wehrhan:Steps toward interstellar silicate mineralogy. VI. Dependence of crystalline olivine IR spectra on iron content and particle shape, Astron. Astrophys.378, 228 (2001)

    Article  ADS  Google Scholar 

  18. V.G. Farafonov:Light scattering by multilayer nonconfocal ellipsoids in the rayleigh approximation, Opt. Spectrosc.90, 574 (2001)

    Article  ADS  Google Scholar 

  19. D.P. Gilra:Collective excitations and dust particles in space, In Scientific Results from the Orbiting Astronomical Observatory (OAO-2),310, 295 (1972)

    ADS  Google Scholar 

  20. J.M. Greenberg:What Are Comets Made of? In: Comets, L.L. Wilkening (Ed.) (Univ. of Arizona Press, Tuscon, 1982), 131

    Google Scholar 

  21. J.M. Greenberg, N.E. Pedersen and J.C. Pedersen:Microwave analog to the scattering of light by nonspherical particles, J. Appl. Phys.32, 233 (1961)

    Article  ADS  Google Scholar 

  22. E. Grün, et al.:Kuiper prize lecture: Dust astronomy, Icarus,174, 1 (2005)

    Article  ADS  Google Scholar 

  23. B.Ã….S. Gustafson and L. Kolokolova:A systematic study of light scattering by aggregate particles using the microwave analog technique: Angular and wavelength dependence of intensity and polarization, J. Geophys. Res.104, 31711 (1999)

    Google Scholar 

  24. S.R. Habbal, et al.:On the detection of the signature of silicon nanoparticle dust grains in coronal holes, Astrophys. J.592, L87 (2003)

    Article  ADS  Google Scholar 

  25. J.I. Hage and J.M. Greenberg:A model for the optical properties of porous grains, Astrophys. J.361, 251 (1990)

    Article  ADS  Google Scholar 

  26. L.G. Henyey and J.L. Greenstein:Diffuse radiation in the galaxy, Astrophys. J.93, 70 (1941)

    Article  ADS  Google Scholar 

  27. F. Hoyle and N.C. Wickramasinghe:Metallic particles in astronomy, Astrophys. Space Sci.,147, 245 (1988)

    Article  ADS  Google Scholar 

  28. J.D. Jackson:Classical electrodynamics (3rd ed), (Wiley, New York, 1998)

    Google Scholar 

  29. H. Kimura, H. Okamoto and T. Mukai:Radiation pressure and the poynting-robertson effect for fluffy dust particles, Icarus157, 349 (2002)

    Article  ADS  Google Scholar 

  30. H. Kimura, L. Kolokolova and I. Mann:Optical properties of cometary dust: Constraints from numerical studies on light scattering by aggregate particles, Astron. Astrophys.407, L5 (2003)

    Article  ADS  Google Scholar 

  31. H. Kimura, L. Kolokolova and I. Mann:Light scattering by cometary dust: Numerically simulated with aggregate particles consisting of identical spheres, Astron. Astrophys.449, 1243 (2006)

    Article  ADS  Google Scholar 

  32. J. Kissel, et al.:COSIMA – High resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles onboard rosetta, Space Sci. Rev.128, 823 (2007)

    Article  ADS  Google Scholar 

  33. M. Köhler, H. Kimura and I. Mann:Applicability of the discrete-dipole approximation to light-scattering simulations of large cosmic dust aggregates, Astron. Astrophys.448, 395 (2006)

    Article  ADS  Google Scholar 

  34. M. Köhler, T. Minato, H. Kimura and I. Mann:Radiation pressure force acting on cometary aggregates, Adv. Space Res.40, 266 (2007)

    Article  ADS  Google Scholar 

  35. L. Kolokolova, M.S. Hanner, A.-C. Levasseur-Regourd and B.Ã….S. Gustafson:Physical properties of cometary dust from light scattering and thermal emission, CometsII, 577 (2004)

    Google Scholar 

  36. T. Kozasa, J. Blum and T. Mukai:Optical properties of dust aggregates. I. Wavelength dependence, Astron. Astrophys.263, 423 (1992)

    ADS  Google Scholar 

  37. T. Kozasa, J. Blum, H. Okamoto and T. Mukai:Optical properties of dust aggregates. II. Angular dependence of scattered light, Astron. Astrophys.276, 278 (1993)

    ADS  Google Scholar 

  38. L.D. Landau, E.M. Lifshitz and L.P. Pitaevskii:Electrodynamics of Continuous Media (2nd ed.), (Pergamon, Oxford, 2000)

    Google Scholar 

  39. A. Laor and B.T. Draine:Spectroscopic constraints on the properties of dust in active galactic nuclei, Astrophys. J.402, 441 (1993)

    Article  ADS  Google Scholar 

  40. J. Lasue and A.C. Levasseur-Regourd:Porous irregular aggregates of sub-micron sized grains to reproduce cometary dust light scattering observations, J. Quant. Spectrosc. Radiat. Transfer100, 220 (2006)

    Article  ADS  Google Scholar 

  41. G. Ledoux, et al.:Silicon as a candidate carrier for ERE, Astron. Astrophys.333, L39 (1998)

    ADS  Google Scholar 

  42. H.M. Lee and B.T. Draine:Infrared extinction and polarization due to partially aligned spheroidal grains – models for the dust toward the BN object, Astrophys. J.290, 211 (1985)

    Article  ADS  Google Scholar 

  43. A.C. Levasseur-Regourd, T. Mukai, J. Lasue and Y. Okada:Physical properties of cometary and interplanetary dust, Planet. Space Sci.55, 1010 (2007)

    Article  ADS  Google Scholar 

  44. A. Li:On TiC nanoparticles as the origin of the 21μm emission feature in post-asymptotic giant branch stars, Astrophys. J.599, L45 (2003a)

    Article  ADS  Google Scholar 

  45. A. Li:Cosmic Needles versus cosmic microwave background radiation, Astrophys. J.584, 593 (2003b)

    Article  ADS  Google Scholar 

  46. A. Li:Can Fluffy dust alleviate the subsolar interstellar abundance problem?, Astrophys. J.622, 965 (2005a)

    Article  ADS  Google Scholar 

  47. A. Li:On the absorption and emission properties of interstellar grains, In: ‘‘The Spectral Energy Distribution of Gas-Rich Galaxies: Confronting Models with Data’’, C.C. Popescu and R.J. Tuffs, (Ed.) AIP Conf. Ser.761, 163 (2005b)

    Google Scholar 

  48. A. Li and B.T. Draine:Are silicon nanoparticles an interstellar dust component? Astrophys. J.564, 803 (2002)

    Article  ADS  Google Scholar 

  49. A. Li, J.M. Greenberg and G. Zhao:Modelling the astronomical silicate features – I. On the spectrum subtraction method, Mon. Not. Roy. Astron. Soc.334, 840 (2002)

    Article  ADS  Google Scholar 

  50. A. Li, K.A. Misselt and Y.J. Wang:On the unusual depletions toward Sk 155 or what are the small magellanic cloud dust grains made of?, Astrophys. J.640, L151 (2006)

    Article  ADS  Google Scholar 

  51. A. Li, J. Ortega and J.I. Lunine:BD+20 307: Attogram dust or extreme asteroidal collisions?, in preparation (2007)

    Google Scholar 

  52. A.C. Lind and J.M. Greenberg:Electromagnetic scattering by obliquely oriented cylinders, J. Appl. Phys.37, 3195 (1966)

    Article  ADS  Google Scholar 

  53. I. Mann:Evolution of Dust and Small Bodies: Physical Processes, in Small Bodies in Planetary Systems, I. Mann, A.M. Nakamura, and T. Mukai, (Ed.) (Springer, Berlin 2007a)

    Google Scholar 

  54. I. Mann:Nanoparticles in the inner solar system, Planet. Space Sci.55, 1000 (2007b)

    Article  ADS  Google Scholar 

  55. I. Mann and E. Murad:On the existence of silicon nanodust near the sun, Astrophys. J.624, L125 (2005)

    Article  ADS  Google Scholar 

  56. I. Mann, H. Okamoto, T. Mukai, H. Kimura and Y. Kitada:Fractal aggregate analogues for near solar dust properties, Astron. Astrophys.291, 1011 (1994)

    ADS  Google Scholar 

  57. I. Mann, H. Kimura and L. Kolokolova:A comprehensive model to describe light scattering properties of cometary dust, J. Quant. Spectrosc. Radiat. Transfer89, 291 (2004)

    Article  ADS  Google Scholar 

  58. J.S. Mathis, D. Cohen, J.P. Finley and J. Krautter:The X-ray halo of nova V1974 cygni and the nature of interstellar dust, Astrophys. J.449, 320 (1995)

    Article  ADS  Google Scholar 

  59. M.I. Mishchenko, L.D. Travis and A. Macke:Scattering of light by polydisperse, randomly oriented, finite circular cylinders, Appl. Opt.35, 4927 (1996)

    Article  ADS  Google Scholar 

  60. T. Mukai, H. Ishimoto, T. Kozasa, J. Blum and J.M. Greenberg:Radiation pressure forces of fluffy porous grains, Astron. Astrophys.262, 315 (1992)

    ADS  Google Scholar 

  61. Y. Okada, A.M. Nakamura and T. Mukai:Light scattering by particulate media of irregularly shaped particles: Laboratory measurements and numerical simulations, J. Quant. Spectrosc. Radiat. Transfer100, 295 (2006)

    Article  ADS  Google Scholar 

  62. V. Ossenkopf, Th. Henning and J.S. Mathis:Constraints on cosmic silicates, Astron. Astrophys.261, 567 (1992)

    ADS  Google Scholar 

  63. J.W. Overbeck:Small-angle scattering of celestial X-rays by interstellar grains, Astrophys. J.141, 864 (1965)

    Article  ADS  Google Scholar 

  64. E.M. Purcell:On the absorption and emission of light by interstellar grains, Astrophys. J.158, 433 (1969)

    Article  ADS  Google Scholar 

  65. E.M. Purcell and C.R. Pennypacker:Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J.186, 705 (1973)

    Article  ADS  Google Scholar 

  66. R.K. Smith and E. Dwek:Soft X-ray scattering and halos from dust, Astrophys. J.503, 831 (1998)

    Article  ADS  Google Scholar 

  67. R.K. Smith, R.J. Edgar and R.A. Shafer:The X-ray halo of GX 13+1, Astrophys. J.581, 562 (2002)

    Article  ADS  Google Scholar 

  68. I. Song, B. Zuckerman, A.J. Weinberger and E.E. Becklin:Extreme collisions between Planetesimals as the origin of warm dust around a sun-like star, Nature436, 363 (2005)

    Article  ADS  Google Scholar 

  69. H.C. van de Hulst:Light scattering by small particles, (John Wiley & Sons, New York, 1957)

    Google Scholar 

  70. N.V. Voshchinnikov and V.G. Farafonov:Optical properties of spheroidal particles, Astrophys. Space Sci.204, 19 (1993)

    Article  ADS  Google Scholar 

  71. M. Wilck and I. Mann:Radiation pressure forces on ‘‘Typical’’ interplanetary dust grains, Planet. Space Sci.44, 493 (1996)

    Article  ADS  Google Scholar 

  72. A.N. Witt, K.D. Gordon and D.G. Furton:Silicon nanoparticles: Source of extended red emission? Astrophys. J.501, L111 (1998)

    Article  ADS  Google Scholar 

  73. A.N. Witt, R.K. Smith and E. Dwek:X-ray halos and large grains in the diffuse interstellar medium, Astrophys. J.550, L201 (2001)

    Article  ADS  Google Scholar 

  74. M.J. Wolff, G.C. Clayton and S.J. Gibson:Modeling composite and fluffy grains. II. Porosity and phase functions, Astrophys. J.503, 815 (1998)

    Article  ADS  Google Scholar 

  75. E.L. Wright:Thermalization of starlight by elongated grains – could the microwave, background have been produced by stars? Astrophys.J.255, 401(1982) 184

    Article  ADS  Google Scholar 

  76. Z.F. Xing and M.S. Hanner:Light scattering by aggregate particles, Astron. Astrophys.324, 805 (1999)

    ADS  Google Scholar 

  77. P.A. Yanamandra-Fisher and M.S. Hanner:Optical properties of nonspherical particles of size comparable to the wavelength of light: Application to comet dust, Icarus138, 107 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, A. (2008). Optical Properties of Dust. In: Mann, I., Nakamura, A., Mukai, T. (eds) Small Bodies in Planetary Systems. Lecture Notes in Physics, vol 758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76935-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76935-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76934-7

  • Online ISBN: 978-3-540-76935-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics