Advertisement

Large Scale Simulation of Tor:

Modelling a Global Passive Adversary
  • Gavin O’Gorman
  • Stephen Blott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4846)

Abstract

Implementing global passive adversary attacks on currently deployed low latency anonymous networks is not feasible. This paper describes the implementation of a large scale, discrete event based simulation of Tor, using the SSFNet simulator. Several global passive adversary attacks are implemented on a simulated Tor network comprised of approximately 6000 nodes. The attacks prove to be highly accurate (80 percent stream correlation rate) for low traffic conditions but significantly less effective on denser, multiplexed links (18 percent success rate).

Keywords

Overlay Network Large Scale Simulation Router Node Correlation Attack Exit Router 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)Google Scholar
  2. 2.
    Developers, T.: Tor website (June 2007), http://tor.eff.org
  3. 3.
    Cowie, J., Liu, H.: Towards realistic million-node internet simulations. In: Proceedings of the 1999 International Conference on Parallel and Distributed Processing Techniques and Applications (1999)Google Scholar
  4. 4.
    Feldmann, A., Gilbert, A., Huang, P., Willinger, W.: Dynamics of IP traffic: A study of the role of variability and the impact of control. In: Proceedings of ACM SIGCOMM 1999, pp. 301–313. ACM Press, New York (1999)Google Scholar
  5. 5.
    Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Back, A., Möller, U., Stiglic, A.: Traffic analysis attacks and trade-offs in anonymity providing systems. In: Moskowitz, I.S. (ed.) Proceedings of Information Hiding Workshop (IH 2001). LNCS, vol. 2137, pp. 245–257. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Levine, B.N., Reiter, M.K., Wang, C., Wright, M.K.: Timing attacks in low-latency mix-based systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: Attacks and defenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Bissias, G.D., Liberatore, M., Levine, B.N.: Privacy vulnerabilities in encrypted http streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Venkatraman, B., Newman-Wolfe, R.: Performance analysis of a method for high level prevention of traffic analysis using measurements from a campus network. Computer Security Applications Conference, Proceedings, 10th Annual (1994) 288–297 (1994)Google Scholar
  11. 11.
    Newman, R.E., Moskowitz, I.S., Syverson, P., Serjantov, A.: Metrics for traffic analysis prevention. In: Dingledine, R. (ed.) PET 2003. LNCS, vol. 2760, Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Zhu, Y., Fu, X., Graham, B., Bettati, R., Zhao, W.: On flow correlation attacks and countermeasures in mix networks. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-Resource Routing Attacks Against Anonymous Systems. Technical Report CU-CS-1025-07, University of Colorado at Boulder (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gavin O’Gorman
    • 1
  • Stephen Blott
    • 1
  1. 1.Dublin City University, Glasnevin, D9, DublinIreland

Personalised recommendations