Skip to main content

Texture Analysis by Accurate Identification of a Generic Markov–Gibbs Model

  • Chapter
Book cover Applied Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 91))

A number of applied problems are effectively solved with simple Markov-Gibbs random field (MGRF) models of spatially homogeneous or piecewise-homogeneous images provided that their identification (parameter estimation) is able to focus such a prior on a particular class of images. We propose more accurate analytical potential estimates for a generic MGRF with multiple pairwise pixel interaction and use them for structural analysis and synthesis of stochastic and periodic image textures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Barndorff-Nielsen. Information and Exponential Families in Statistical Theory. Wiley, New York, 1978

    MATH  Google Scholar 

  2. J.E. Besag. Journal of Royal Statistical Society, B48:192–236, 1974

    MathSciNet  Google Scholar 

  3. P. Brodatz. Textures: A Photographic Album for Artists and Designers. Dover, New York, 1966

    Google Scholar 

  4. G.R. Cross and A.K. Jain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5:25–39, 1983

    Article  Google Scholar 

  5. A.A. Efros and W.T. Freeman. Image quilting for texture synthesis and transfer. In Proceedings of ACM Computer Graphics Conference SIGGRAPH 2001. ACM Press, New York, 2001

    Google Scholar 

  6. A.A. Efros and T.K. Leung. Texture synthesis by non-parametric sampling. In Proceedings of 7th International Conference on Computer Vision (ICCV 1999), volume 2. IEEE CS Press, Los Alamitos, 1999

    Google Scholar 

  7. G.L. Gimel’farb. Non-Markov Gibbs texture model with multiple pairwise pixel interactions. In Proceedings of the 13th International Conference on Pattern Recognition (ICPR 1996), volume B. IEEE CS Press, Los Alamitos, 1996

    Google Scholar 

  8. G.L. Gimel’farb. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:1110–1114, 1996

    Article  Google Scholar 

  9. G.L. Gimel’farb. Image Textures and Gibbs Random Fields. Kluwer Academic, Dordrecht, 1999

    MATH  Google Scholar 

  10. G. Gimel’farb and D. Zhou. Fast synthesis of large-size textures using bunch sampling. In Proceedings of the Image and Vision Computing New Zealand (IVCNZ 2002). Wickliffe, Dunedin 2002

    Google Scholar 

  11. G. Gimel’farb and D. Zhou, Accurate identification of a Markov–Gibbs model for texture synthesis by bunch sampling. In Proceedings of the International Conference on Computer Analysis of Images and Patterns (CAIP 2007), volume 4673, LNCS. Springer, Berlin Heidelberg New York, 2007

    Google Scholar 

  12. R.M. Haralick. Proceedings of IEEE 67:786–804, 1979

    Article  Google Scholar 

  13. R.M. Haralick and L.G. Shapiro. Computer and Robot Vision, volume 2. Addison-Wesley, Reading, 1993

    Google Scholar 

  14. B. Julesz. Nature, 290:91–97, 1981

    Article  Google Scholar 

  15. V. Kwatra, A. Schidl, I.A. Essa, et al. Graphcut textures: Image and video synthesis using graph cuts. In Proceedings of the ACM Computer Graphics Conference SIGGRAPH 2003. ACM Press, New York, 2003

    Google Scholar 

  16. T.K. Leung and J. Malik. International Journal of Computer Vision 43:29–44, 2001

    Article  MATH  Google Scholar 

  17. L. Liang, C. Liu, and H.Y. Shum. Real-time texture synthesis by patch-based sampling. Technical Report MSR-TR-2001-40, Microsoft Research, 2001

    Google Scholar 

  18. Y. Liu and W.-C. Lin. Deformable texture: the irregular-regular-irregular cycle. In Proceedings of the 3rd International Workshop Texture Analysis and Synthesis (Texture 2003), Heriot-Watt University, Edinburgh, 2003

    Google Scholar 

  19. Y. Liu, Y. Tsin, and W. Lin. International Journal of Computer Vision 62:145–159, 2005

    Google Scholar 

  20. R. Picard, C. Graszyk and S. Mann et al. VisTex Database. MIT Media Lab, Cambridge, USA, 1995

    Google Scholar 

  21. A. Rosenfeld and J.L. Pfaltz. Journal of ACM 13:471–494, 1966

    Article  MATH  Google Scholar 

  22. P. Rosin. Pattern Recognition 34:2083–2096, 2001

    Article  MATH  Google Scholar 

  23. S. Roth and M.J. Black. Fields of experts: A framework for learning image priors. In Proceedings of IEEE CS Conference on Computer Vision Pattern Recognition (CVPR 2005), volume 2. IEEE CS Press, Los Alamitos, 2005

    Google Scholar 

  24. D. Schattschneider. American Mathematical Monthly 85:439–450, 1978

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Srivastava, X. Liu and U. Grenander. IEEE Transactions on Pattern Analysis Machine Intelligence 24:1200–1214, 2002

    Article  Google Scholar 

  26. M. Varma and A. Zisserman. Classifying images of materials: Achieving viewpoint and illumination independence. In Proceedings of the European Conference on Computer Vision (ECCV 2002), pt. III, volume 2352, LNCS. Springer, Berlin Heidelberg New York, 2002

    Google Scholar 

  27. K. Voss and H. Suesse. IEEE Transactions on Pattern Analalysis and Machine Intelligence 19:80–84, 1997

    Article  Google Scholar 

  28. L. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quantization. In Proceedings of the ACM Computer Graphics Conference, SIGGRAPH 2000. ACM Press/Addison Wesley, Longman, New York, 2000

    Google Scholar 

  29. G. Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer, Berlin Heidelberg New York, 1995

    MATH  Google Scholar 

  30. A. Zalesny and L.J. Van Gool. A compact model for viewpoint dependent texture synthesis. In Proceedings of the Second European Workshop on 3D Structure from Multiple Images of Large-Scale Environments (SMILE 2000: Revised Papers). Springer, Berlin Heidelberg New York, 2001

    Google Scholar 

  31. S.C. Zhu, C.E. Guo, Y. Wang, and Z. Xu. International Journal of Computer Vision 62:121–143, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gimel'farb, G., Zhou, D. (2008). Texture Analysis by Accurate Identification of a Generic Markov–Gibbs Model. In: Bunke, H., Kandel, A., Last, M. (eds) Applied Pattern Recognition. Studies in Computational Intelligence, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76831-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76831-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76830-2

  • Online ISBN: 978-3-540-76831-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics