Skip to main content

An Approximation Kuhn–Tucker Approach for Fuzzy Linear Bilevel Decision Making

  • Chapter
Intelligent Decision Making: An AI-Based Approach

Part of the book series: Studies in Computational Intelligence ((SCI,volume 97))

In bilevel decision making, the leader aims to achieve an optimal solution by considering the follower's optimized strategy to react each of his/her possible decisions. In a real-world bilevel decision environment, uncertainty must be considered when modeling the objective functions and constraints of the leader and the follower. Following our previous work, this chapter proposes a fuzzy bilevel decision making model to describe bilevel decision making under uncertainty. After giving the definitions of optimal solutions and related theorems for fuzzy bilevel decision problems this chapter develops an approximation Kuhn–Tucker approach to solve the problem. Finally, an example of reverse logistics management illustrates the application of this proposed fuzzy bilevel decision making approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiyoshi E. and Shimizu K. (1981) Hierarchical decentralized systems and its new solution by a barrier method, IEEE Transactions on Systems, Man, and Cybernetics 11: 444–449

    Article  MathSciNet  Google Scholar 

  • Amat J.F. and McCarl B. (1981) A representation and economic interpretation of a two-level programming problem, Journal of the Operational Research Society 32: 783–792

    Article  MATH  Google Scholar 

  • Anandalingam G. and Friesz T. (1992) Hierarchical optimization: An introduction, Annals of Operations Research 34: 1–11

    Article  MATH  MathSciNet  Google Scholar 

  • Bard J. (1998) Practical Bilevel Optimization: Algorithms and Applications, Amsterdam, Kluwer

    MATH  Google Scholar 

  • Bard J. and Falk J. (1982) An explicit solution to the programming problem, Computers and Operations Research 9: 77–100

    Article  MathSciNet  Google Scholar 

  • Bialas W. and Karwan M. (1984) Two-level linear programming, Management Science 30: 1004–1020

    Article  MATH  MathSciNet  Google Scholar 

  • Bracken J. and McGill J. (1973) Mathematical programs with optimization problems in the constraints, Operations Research 21: 37–44

    Article  MATH  MathSciNet  Google Scholar 

  • Candler W. and Townsley R. (1982) A linear two-level programming problem, Computers and Operations Research 9: 59–76

    Article  MathSciNet  Google Scholar 

  • Chen Y., Florian M. and Wu S. (1992) A descent dual approach for linear bilevel programs, Technical Report CRT-866, Centre de Recherche sur les Transports

    Google Scholar 

  • Dempe S. (1987) A simple algorithm for the linear bilevel programming problem, Optimization 18: 373–385

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen P., Jaumard B. and Savard G. (1992) New branch-and-bound rules for linear bilevel programming, SIAM Journal on Scientific and Statistical Computing 13: 1194–1217

    Article  MATH  MathSciNet  Google Scholar 

  • Lai Y.J. (1996) Hierarchical optimization: A satisfactory solution, Fuzzy Sets and Systems 77: 321–335

    Article  MATH  MathSciNet  Google Scholar 

  • Leblanc L. and Boyce D. (1986) A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows, Transportation Research 20: 259–265

    Article  MathSciNet  Google Scholar 

  • Marcotte P. (1983) Network optimization with continuous control parameters, Transportation Science 17: 181–197

    Article  Google Scholar 

  • Miller T., Friesz T. and Tobin R. (1992) Heuristic algorithms for delivered price spatially competitive network facility location problems, Annals of Operations Research 34: 177–202

    Article  MATH  Google Scholar 

  • Papavassilopoulos G. (1982) Algorithms for static Stackelberg games with linear costs and polyhedral constraints, Proceedings of the 21st IEEE Conference on Decisions and Control 647–652

    Google Scholar 

  • Sakawa M. (1993) Fussy Sets and Interactive Mulitobjective Optimization, New York, Plenum

    Google Scholar 

  • Sakawa M., Nishizaki I. and Uemura Y. (2000) Interactive fuzzy programming for multilevel linear programming problems with fuzzy parameters, Fuzzy Sets and Systems 109: 3–19

    Article  MATH  MathSciNet  Google Scholar 

  • Shi C., Lu J. and Zhang G. (2005a) An extended Kuhn–Tucker approach for linear bilevel programming, Applied Mathematics and Computation 162: 51–63

    Article  MATH  MathSciNet  Google Scholar 

  • Shi C., Lu J. and Zhang G. (2005b) An extended Kth-bast approach for linear bilevel programming, Applied Mathematics and Computation 164: 843–855

    Article  MATH  MathSciNet  Google Scholar 

  • Shi C., Zhang G. and Lu J. (2005c) On the definition of linear bilevel programming solution, Applied Mathematics and Computation 160: 169–176

    Article  MATH  MathSciNet  Google Scholar 

  • Shih H.S., Lai Y.J. and Lee E.S. (1996) Fuzzy approach for multilevel programming problems, Computers and Operations Research 23: 73–91

    Article  MATH  MathSciNet  Google Scholar 

  • Shih H.S. and Lee E.S. (1999) Fuzzy multi-level minimum cost flow problems, Fuzzy Sets and Systems 107: 159–176

    Article  MATH  MathSciNet  Google Scholar 

  • Von Stackelberg H. (1952) Theory of the Market Economy, New York, Oxford, Oxford University Press

    Google Scholar 

  • White D. and Anandalingam G. (1993) A penalty function approach for solving bilevel linear programs, Journal of Global Optimization 3: 397–419

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh L.A. (1965) Fuzzy sets, Information and Control 8: 338–353

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang G., Lu J. and Wu Y. (2003a) Formulation of linear programming problems with fuzzy coefficients of objective functions and constraints, Asian Information-Science-Life 2: 57–68

    Google Scholar 

  • Zhang G., Wu Y., Remia M. and Lu J. (2003b) Formulation of fuzzy linear programming problems as four-objective constrained problems, Applied Mathematics and Computation 139: 383–399

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang G. and Lu J. (2005) The definition of optimal solution and an extended Kuhn–Tucker approach for fuzzy linear bilevel programming, The IEEE Intelligence Informatics Bulletin 5: 1–7

    Google Scholar 

  • Zhang G. and Lu J. (2007) Model and approach of fuzzy bilevel decision making for logistics planning problem, Journal of Enterprise Information Management 20: 178–197

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, G., Lu, J., Dillon, T. (2008). An Approximation Kuhn–Tucker Approach for Fuzzy Linear Bilevel Decision Making. In: Phillips-Wren, G., Ichalkaranje, N., Jain, L.C. (eds) Intelligent Decision Making: An AI-Based Approach. Studies in Computational Intelligence, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76829-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76829-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76828-9

  • Online ISBN: 978-3-540-76829-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics