An Analytical Approach for Predicting and Identifying Use Error and Usability Problem

  • Lars-Ola Bligård
  • Anna-Lisa Osvalder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4799)


In health care, the use of technical equipment plays a central part. To achieve high patient safety and efficient use, it is important to avoid use errors and usability problems when handling the medical equipment. This can be achieved by performing different types of usability evaluations on prototypes during the product development process of medical equipment. This paper describes an analytical approach for predicting and identifying use error and usability problems. The approach consists of four phases; (1) Definition of Evaluation, (2) System Description, (3) Interaction Analysis, and (4) Result Compilation and Reflection. The approach is based on the methods Hierarchical Task Analysis (HTA), Enhanced Cognitive Walkthrough (ECW) and Predictive Use Error Analysis (PUEA).


Usability Engineering Usability Evaluation Analytical Methods Medical Equipment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basnyat, A., Palanque, P.: Softaware hazard and barriers for informing the design of safety-critical interactive systems. In: Zio, G.S. (ed.) Safety and Reliability for Managing Risk, pp. 257–265. Taylor & Francis Group, London (2006)Google Scholar
  2. 2.
    Bligård, L.-O.: Prediction of Medical Device Usability Problems and Use Errors – An Improved Analytical Methodical Approach, Chalmers University of Technology, Göteborg (2007)Google Scholar
  3. 3.
    Bligård, L.-O., Eriksson, M., Osvalder, A.-L.: Internal Report Gambro Lundia AB, Classified (2006)Google Scholar
  4. 4.
    Bligård, L.-O., Osvalder, A.-L.: Internal Report Gambro Lundia AB, Classified (2006)Google Scholar
  5. 5.
    Cooper, L., Baber, C.: Focus Groups. In: Stanton, N.A., Hedge, A., Brookhuis, K., Salas, E., Hendrick, H. (eds.) Handbook of Human Factors and Ergonomics Methods, CRC Press, London (2005)Google Scholar
  6. 6.
    Crowley, J.J., Kaye, R.D.: Identifying and understanding medical device use errors. Journal of Clinical Engineering 27, 188–193 (2002)Google Scholar
  7. 7.
    Embrey, D.E.: SHERPA: a Systematic Human Error Reduction and Prediction Approach, International Topical Meeting on Advances in human factors in nuclear power system, American Nuclear Society, Knoxville, pp. 184–193 (1986)Google Scholar
  8. 8.
    Embrey, D.E., Reason, J.T.: The Application of Cognitive Models to the Evaluation and Prediction of Human Reability, International Topical Meeting on Advances in human factors in nuclear power system, American Nuclear Society, Knoxville (1986)Google Scholar
  9. 9.
    FDA, Proposal for Reporting of Use Errors with Medical Devices (1999) Google Scholar
  10. 10.
    Garmer, K., Liljegren, E., Osvalder, A.-L., Dahlman, S.: Application of usability testing to the development of medical equipment. Usability testing of a frequently used infusion pump and a new user interface for an infusion pump developed with a human factors approach, International Journal of Industrial Ergonomics 29, 145–159 (2002)Google Scholar
  11. 11.
    Garmer, K., Ylvén, J., Karlsson, I.C.M.: User participation in requirements elicitation comparing focus group interviews and usability tests for eliciting usability requirements for medical equipment: A case study. International Journal of Industrial Ergonomics 33, 85–98 (2004)CrossRefGoogle Scholar
  12. 12.
    Graham, M.J., Kubose, T.K., Jordan, D., Zhang, J., Johnson, T.R., Patel, V.L.: Heuristic evaluation of infusion pumps: Implications for patient safety in Intensive Care Units. International Journal of Medical Informatics 73, 771–779 (2004)CrossRefGoogle Scholar
  13. 13.
    Harms-Ringdahl, L.: Safety Analysis - Principles and Practice in Occupational Safety. Taylor & Francis, London (2001)Google Scholar
  14. 14.
    Harris, D., Stanton, N.A., Marshall, A., Young, M.S., Demagalski, J., Salmon, P.: Using SHERPA to predict design-induced error on the flight deck. Aerospace Science and Technology 9, 525–532 (2005)CrossRefGoogle Scholar
  15. 15.
    Hartson, H.R., Andre, T.S., Williges, R.C.: Criteria for evaluating usability evaluation methods. International Journal of Human-Computer Interaction 13, 373–410 (2001)CrossRefGoogle Scholar
  16. 16.
    Holzinger, A.: Usability engineering methods for software developers. Communications of the ACM 48, 71–74 (2005)CrossRefGoogle Scholar
  17. 17.
    IEC, IEC 60601-1-6:2004 Medical electrical equipment - Part 1-6: General requirements for safety - Collateral standard: Usability IEC, Geneva (2004)Google Scholar
  18. 18.
    Janhager, J.: User Consideration in Early Stages of Product Development – Theories and Methods, The Royal Institute of Technology, Stockholm (2005)Google Scholar
  19. 19.
    Kaufman, D.R., Patel, V.L., Hilliman, C., Morin, P.C., Pevzner, J., Weinstock, R.S., Goland, R., Shea, S., Starren, J.: Usability in the real world: assessing medical information technologies in patients’ homes. Journal of Biomedical Informatics 36, 45–60 (2003)CrossRefGoogle Scholar
  20. 20.
    Kushniruk, A.W., Patel, V.L.: Cognitive and usability engineering methods for the evaluation of clinical information systems. Journal of Biomedical Informatics 37, 56–76 (2004)CrossRefGoogle Scholar
  21. 21.
    Lane, R., Stanton, N.A., Harrison, D.: Applying hierarchical task analysis to medication administration errors. Applied Ergonomics 37, 669–679 (2006)CrossRefGoogle Scholar
  22. 22.
    Lewis, C., Wharton, C.: Cognitive Walkthrough. In: Helander, M., Landauer, T.K., Prabhu, P. (eds.) Handbook of Human-computer Interaction, Elsevier Science BV, New York (1997)Google Scholar
  23. 23.
    Liljegren, E., Osvalder, A.-L.: Cognitive engineering methods as usability evaluation tools for medical equipment. International Journal of Industrial Ergonomics 34, 49–62 (2004)CrossRefGoogle Scholar
  24. 24.
    Lin, L., Isla, R., Doniz, K., Harkness, H., Vicente, K.J., Doyle, D.J.: Applying human factors to the design of medical equipment: Patient-controlled analgesia. Journal of Clinical Monitoring and Computing 14, 253–263 (1998)CrossRefGoogle Scholar
  25. 25.
    Liu, Y., Osvalder, A.-L., Dahlman, S.: Exploring user background settings in cognitive walkthrough evaluation of medical prototype interfaces: A case study. International Journal of Industrial Ergonomics 35, 379–390 (2005)CrossRefGoogle Scholar
  26. 26.
    Moric, A., Bligård, L.-O., Osvalder, A.-L.: Usability of Reusable SpO2 Sensors: A Comparison between two Sensor Types. In: NES. 36th Annual Congress of the Nordic Ergonomics Society Conference, Kolding, Denmark (2004)Google Scholar
  27. 27.
    Nielsen, J.: Usability engineering. Academic Press, Boston (1993)zbMATHGoogle Scholar
  28. 28.
    Nielsen, J., Mack, R.L. (eds.): Usability inspection methods. Wiley, New York (1994)Google Scholar
  29. 29.
    Obradovich, J.H., Woods, D.D.: Users as designers: How people cope with poor HCI design in computer-based medical devices. Human Factors 38, 574–592 (1996)CrossRefGoogle Scholar
  30. 30.
    Rasmussen, J.: Skills, rules and knowledge; signals, signs and symbols, and other distinctions in human performance models. IEEE Transactions on Systems, Man and Cybernetics SMC-13, 257–266 (1983)Google Scholar
  31. 31.
    Reason, J.: Human error. Cambridge Univ. Press, cop., Cambridge (1990)Google Scholar
  32. 32.
    Reason, J.: Managing the Risks of Organizational Accidents, Ashgate, Aldershot (1997)Google Scholar
  33. 33.
    Sanders, M.S., McCormick, E.J.: Human Factors in Engineering and Design. McGraw-Hill, New York (1993)Google Scholar
  34. 34.
    Stanton, N.A.: Hierarchical task analysis: Developments, applications, and extensions. Applied Ergonomics 37, 55–79 (2006)CrossRefGoogle Scholar
  35. 35.
    Wharton, C., Rieman, J., Lewis, C., Polson, P.G.: The Cognitive Walkthrough Method: A Practitioner’s Guide. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection Methods, John Wiley And Sons Ltd, New York, UK (1994)Google Scholar
  36. 36.
    Woods, D., Cook, R.I.: The New Look at Error, Safety, and Failure: A Primer for Health Care (1999)Google Scholar
  37. 37.
    Zhang, J., Johnson, T.R., Patel, V.L., Paige, D.L., Kubose, T.: Using usability heuristics to evaluate patient safety of medical devices. Journal of Biomedical Informatics 36, 23–30 (2003)CrossRefGoogle Scholar
  38. 38.
    Zhang, J., Patel, V.L., Johnson, T.R., Shortliffe, E.H.: A cognitive taxonomy of medical errors. Journal of Biomedical Informatics 37, 193–204 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lars-Ola Bligård
    • 1
  • Anna-Lisa Osvalder
    • 1
  1. 1.Division of Design, Chalmers University of Technology, SE-412 96 GöteborgSweden

Personalised recommendations