An Ontology Approach for Classification of Abnormal White Matter in Patients with Multiple Sclerosis

  • Bruno Alfano
  • Arturo Brunetti
  • Giuseppe De Pietro
  • Amalia Esposito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4799)


Multiple Sclerosis (MS) is an inflammatory autoimmune disease of the Central Nervous System, characterized by development of lesions that cause interference in the communication between brain and the rest of the body. Some techniques using numeric algorithms based on mathematical and probabilistic theories are generally used in order to obtain lesions detection. In this paper we describe an innovative approach for lesions recognition to be applied after segmentation of brain tissues from quantitive evaluation of MR studies. Knowledge about MS lesions is formalized through an ontology and a set of rules: integrating them, automatic inferences can be realized to point out lesions, starting from data about potentially brain abnormal white matter.


Multiple Sclerosis Lesion Detection Medical Ontology Rules Reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pirko, I., Lucchinetti, C.F., Sriram, S., Bakshi, R.: Gray matter involvement in multiple sclerosis. Neurology 68, 634–642 (2007)CrossRefGoogle Scholar
  2. 2.
    McDonald, W.I, Compston, A., Edan, G., et al.: Recommended Diagnostic Criteria for Multiple Sclerosis. Annals of Neurology 50, 121–127 (2001)CrossRefGoogle Scholar
  3. 3.
    Holzinger, A., Geierhofer, R., Errath, M.: Semantic Information in Medical Information Systems - from Data and Information to Knowledge: Facing Information Overload. In: Proc. of I-MEDIA 2007 and I-SEMANTICS 2007, Graz, Austria, pp. 323–330 (2007)Google Scholar
  4. 4.
    Podgorelec, V., Pavlic, L.: Managing Diagnostic Process Data Using Semantic Web. In: CBMS 2007. Twentieth IEEE International Symposium on Computer-Based Medical Systems, IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  5. 5.
    Rosse, C., Mejino, J.L.V.: A Reference Ontology for Bioinformatics: The Foundational Model of Anatomy. Journal of Biomedical Informatics 36, 478–500 (2003)CrossRefGoogle Scholar
  6. 6.
    Rector, A.L., Rogers, J.E., Zanstra, P.E., Van Der Haring, E.: OpenGALEN: Open Source Medical Terminology and Tools. In: Proc AMIA Symp., p. 982 (2003)Google Scholar
  7. 7.
    Humphreys, B., Lindberg, D.: The UMLS project: making the conceptual connection between users and the information they need. Bulletin of the Medical Library Association 81(2), 170–177 (1993)Google Scholar
  8. 8.
    Golbeck, J., Fragoso, G., Hartel, F., Hendler, J., Parsia, B., Oberthaler, J.: The national cancer institute’s thesaurus and ontology. Journal of Web Semantics 1 (2003)Google Scholar
  9. 9.
    Open Biomedical Ontologies, available at
  10. 10.
    Holzinger, A.: Usability Engineering for Software Developers. Communications of the ACM 48(1), 71–74 (2005)CrossRefGoogle Scholar
  11. 11.
    Kumar, A.Y., Lina Yip, Y., Smith, B., Marwede, D., Novotny, D.: An Ontology for Carcinoma Classification for Clinical Bioinformatics.Medical Informatics Europe (MIE 2005), Geneva, 635–640 (2005)Google Scholar
  12. 12.
    Golbreich, C., Bouet, M.: Classification des compte-rendus mammographiques a partir d’une ontologie radiologique en OWL. In: Extraction et gestion de Connaissances (EGC’2006), RNTI, vol. 1, pp. 199–204 (January 2006)Google Scholar
  13. 13.
    Cosic, D., Loncaric, S.: Rule-Based Labeling of CT Head Image. In: Keravnou, E.T., Baud, R.H., Garbay, C., Wyatt, J.C. (eds.) AIME 1997. LNCS, vol. 1211, Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Mechouche, A., Golbreich, C., Gibaud, B.: Towards an hybrid system for annotating brain MRI images. In: CEUR. Proceedings of the OWLED 2006 Workshop on OWL: Experiences and Directions, Athens, Georgia, USA, November 10-11, 2006, vol. 216, pp. 10–11 (2006)Google Scholar
  15. 15.
    Alfano, B., Brunetti, A., Larobina, M., Quarantelli, M., Tedeschi, E., Ciarmiello, A., Covelli, E., Salvatore, M.: Automated Segmentation and Measurement of Global White Matter Lesion Volume in Patients with Multiple Sclerosis. Journal of Magnetic Resonance Imaging 12, 799–807 (2000)CrossRefGoogle Scholar
  16. 16.
    Shahar, A., Greenspan, H.: A Probabilistic Framework for the Detection and Tracking in Time of Multiple Sclerosis Lesions, Macro to Nano, 2004. In: IEEE International Symposium on Biomedical Imaging, pp. 440–443. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  17. 17.
    Boudra, A., Dehak, R., Zhu, Y.M., Pachai, C., Bao, Y.G., Grimaud, J.: Automated segmentation of multiple sclerosis lesions in multispectral magnetic resonance imaging using fuzzy clustering. Computers in Biology and Medicine 30(1), 23–40 (2000)CrossRefGoogle Scholar
  18. 18.
    Ganna, M., Rombaut, M., Goutte, R., Zhu, Y.M.: Improvement of brain lesions detection using information fusion approach. In: 6th International Conference on Signal Processing (2002)Google Scholar
  19. 19.
    McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview, W3C Recommendation (February 10, 2004). Latest version is available at
  20. 20.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Member (May 21, 2004) (submission).Latest version is available at
  21. 21.
    Gruber, T.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal of Human Computer Studies, 907–928 (1995)Google Scholar
  22. 22.
    Dameron, O.: Modélisation, représentation et partage de connaissances anatomiques sur le cortex cérébral, Thése de doctorat d’Université, Université de Rennes 1 (2003)Google Scholar
  23. 23.
    Alfano, B., Brunetti, A., Arpaia, M., Ciarmiello, A., Covelli, E.M., Salvatore, M.: Multiparametric Display of Spin-Echo Data from MR Studies of Brain. Journal of Magnetic Resonance Imaging 5(2), 217–225 (1995)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Motik, B., Harrocks, I., Rosati, R., Seattler, U.: Can OWL and logic programming live together happily ever after? In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 501–514. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Prud’hommeaux, E., Seaborne, A., SPARQL,: Query Language for RDF, W3C Candidate Recommendation (June 14, 2007). Latest version is available at

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bruno Alfano
    • 1
  • Arturo Brunetti
    • 2
  • Giuseppe De Pietro
    • 3
  • Amalia Esposito
    • 3
  1. 1.National Research Council (CNR), Biostructure and Bioimaging Institute (IBB), via Pansini 5 – 80131 – NapoliItaly
  2. 2.University “Federico II”, Department of Biomorphological and Functional Sciences, via Pansini 5 – 80131 – NapoliItaly
  3. 3.National Research Council (CNR), Institute for High-Performance Computing and Networking (ICAR), via Pietro Castellino 111 – 80131 – NapoliItaly

Personalised recommendations