Cognitive Task Analysis for Prospective Usability Evaluation in Computer-Assisted Surgery

  • Armin Janß
  • Wolfgang Lauer
  • Klaus Radermacher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4799)


Within the framework of the INNORISK (Innovative Risk Analysis Methods for Medical Devices) project, a twofold strategy is pursued for prospective usability assessment of Computer-Assisted Surgery (CAS) systems in the context of a risk management process. In one approach ConcurTaskTrees are applied to accomplish a hierarchical task analysis including temporal relations. In the other approach, based on the Cognitive Task Analysis method CPM-GOMS (Cognitive Perceptual Motor – Goals Operators Methods Selection Rules), a new technique for detecting potential contradictions and conflicts in the use of concurrent cognitive resources is generated. Within this model-based approach, extrinsic and intrinsic performance shaping factors are comprised, taking into account the specific context of modern surgical work systems. Additionally, a computer assisted usability analysis tool including the above-mentioned methods is developed to provide support for small and medium-sized enterprises in early stages of the design development process of risk sensitive Human-Machine-Interfaces in medical systems.


Cognitive Task Analysis ConcurTaskTree Human Error CAS-System Cognitive Workload Model-based User Interface Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cook, R.I, Woods, D.D.: Adapting to the new technology in the operating room. Human Factors 38, 593–613 (1996)CrossRefGoogle Scholar
  2. 2.
    Sarter, N.B., Woods, D.D., Billings, C.E.: Automation Surprises. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, 2nd edn., pp. 1926–1943. Wiley, Chichester, New York (1997)Google Scholar
  3. 3.
    Brennan, T.A., Leape, L.L., Laird, N.M., et al.: Incidence of adverse events and negligence in hospitalized patients: Results of the Harvard Medical Practice Study-I. N. Engl. J. Med. 324, 370–376 (1991)CrossRefGoogle Scholar
  4. 4.
    Rau, G., Radermacher, K., Thull, B., Pichler, C.v.: Aspects of an Ergonomic System Design of a Medical Work system. In: Taylor, R., Lavallée, S., Burdea, G., Moesges, R. (eds.) Computer Integrated Surgery, pp. 203–221. MIT-Press, Cambridge (1996)Google Scholar
  5. 5.
    Holzinger, A.: Usability Engineering Methods for Software Developers. In: Communications of the ACM, vol. 48(1), pp. 71–74. ACM Press, New York (2005)Google Scholar
  6. 6.
    Nielsen, J.: The Mud-Throwing Theory of Usability(2000)
  7. 7.
    Mayhew, D.J.: The Usability Engineering Life Cycle. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  8. 8.
    Freise, A.: Der Nutzen gut bedienbarer Produkte. Siemens – Pictures of the Future, 2:65. Siemens AG, München (2003)Google Scholar
  9. 9.
    Whitefield, A., Wilson, F., Dowell, J.: A framework for human factors evaluation. Behaviour and Information Technology 10(1), 65–79 (1991)CrossRefGoogle Scholar
  10. 10.
    Kraiss, K.-F.: Modellierung von Mensch-Maschine Systemen. In: Willumeit, H.-P., Kolrep, H. (eds.) Hrsg.: ZMMS-Spektrum, Band 1, Verlässlichkeit von Mensch-Maschine-Systemen, S, pp. 15–35. Pro Universitate Verlag, Berlin (1995)Google Scholar
  11. 11.
    Zimolong, A., Radermacher, K., Stockheim, M., Zimolong, B., Rau, G.: Reliability Analysis and Design in Computer-Assisted Surgery. In: Stephanides, C., et al. (eds.) Universal Access in HCI, pp. 524–528. Lawrence Erlbaum Ass, Mahwah (2003)Google Scholar
  12. 12.
    Radermacher, K., Zimolong, A., Stockheim, M., Rau, G.: Analysing reliability of surgical planning and navigation systems. In: Lemke, H.U., Vannier, M.W., et al. (eds.) International Congress Series 1268, CARS, pp. 824–829 (2004)Google Scholar
  13. 13.
    Woods, D.D.: Behind Human Error: Human Factors Research to Improve Patient Safety. National Summit on Medical Errors and Patient Safety Research, Quality Interagency Coordination Task Force and Agency for Healthcare Research and Quality (2000)Google Scholar
  14. 14.
    Berguer, R.: The application of ergonomics in the work environment of general surgeons. Rev Environ Health 12, 99–106 (1997)Google Scholar
  15. 15.
    Woods, D.D, Cook, R.I, Billings, C.E: The impact of technology on physician cognition and performance. J. Clin. Monit. 11, 5–8 (1995)CrossRefGoogle Scholar
  16. 16.
    Wiener, E.L.: Human factors of advanced technology (“glass cockpit”) transport aircraft. (NASA Contractor Report No. 177528). Moffett Field, CA: NASA-Ames Research Center (1989)Google Scholar
  17. 17.
    Rasmussen, J.: A Framework for Cognitive Task Analysis in Systems Design. In: Hollnagel, E., Mancini, G., Woods, D.D. (eds.) NATO AS1 Series on Intelligent Decision Support in Process Environments, vol. 21, Springer, Heidelberg (1986)Google Scholar
  18. 18.
    Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models. In: Proc. of IFIP Int. Conf. on Human-Computer Interaction Interact 1997, Sydney, July 1997, pp. 362–369. Chapman & Hall, London (1997)Google Scholar
  19. 19.
    Diaper, D., Stanton, N.: The Handbook of Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Associates, Mahwah, London (2004)Google Scholar
  20. 20.
    Bomsdorf, B., Szwillus, G.: Tool support for task-based user interface design. In: ‘Proceedings of CHI 1999, Extended Abstracts’, pp. 169–170. Pittsburgh PA (1999a)Google Scholar
  21. 21.
    Rasmussen, J.: Skills, Rules, Knowledge: Signals, Signs, and Symbols and other Distinctions in Human Performance Models. IEEE Transactions on Systems, Man and Cybernetics SMC-3, 257–267 (1983)Google Scholar
  22. 22.
    Card, S.K., Moran, T.P., Newell, A.: The psychology of Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, New Jersey (1983)Google Scholar
  23. 23.
    John, B.E., Gray, W.D.: CPM-GOMS: An Analysis Method for Tasks with Parallel Activities. In: Conference companion on Human factors in computing systems, pp. 393–394. ACM Press, New York, NY, USA (1995)CrossRefGoogle Scholar
  24. 24.
    Gray, W.D., John, B.E., Atwood, M.E.: The precis of Project Ernestine or an overview of a validation of GOMS. In: Proceedings of CHI, Monterey, California, May 3- May 7, 1992, pp. 307–312. ACM, New York (1992)Google Scholar
  25. 25.
    Schweickert, R., Fisher, D.L., Proctor, R.W.: Steps toward building mathematical and computer models from cognitive task networks. Human Factors 45, 77–103 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Armin Janß
    • 1
  • Wolfgang Lauer
    • 1
  • Klaus Radermacher
    • 1
  1. 1.Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 AachenGermany

Personalised recommendations