Advertisement

An Orientation Service for Dependent People Based on an Open Service Architecture

  • A. Fernández-Montes
  • J. A. Álvarez
  • J. A. Ortega
  • Natividad Martínez Madrid
  • Ralf Seepold
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4799)

Abstract

This article describes a service architecture for ambient assisted living and in particular an orientation navigation service in open places for persons with memory problems such as those patients suffering from Alzheimer’s in its early stages. The service has the following characteristics: one-day system autonomy; self-adjusting interfaces for simple interaction with patients, based on behavioural patterns to predict routes and destinations and to detect lost situations; easy browsing through simple spoken commands and use of photographs for reorientation, and independence of GISs (Geographic Information Systems) to reduce costs and increase accessibility. Initial testing results of the destination prediction algorithm are very positive. This system is integrated in a global e-health/e-care home service architecture platform (OSGi) that enables remote management of services and devices and seamless integration with other home service domains.

Keywords

Health care dependent people Alzheimer service platform OSGi orientation service 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient Intelligence in Assisted Living: Enable Elderly People to Handle Future Interfaces. In: Stephanidis, C. (ed.) Universal Access in HCI, Part II, HCII 2007, Lecture Notes in Computer Science, vol. 4555, pp. 103–112. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    The SENIORITY EU project. Online at: http://www.eu-seniority.com/ (last access: 2007-09-01)
  3. 3.
    Holzinger, A., Searle, G., Nischelwitzer, A.: On some Aspects of Improving Mobile Applications for the Elderly. LNCS, vol. 4554, pp. 923–932. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Holzinger, A., Sammer, P., Hofmann-Wellenhof, R.: Mobile Computing in Medicine: Designing Mobile Questionnaires for Elderly and Partially Sighted People. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 732–739. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Álvarez, J.A., Ortega, J.A., González, L., Velasco, F., Cuberos, F.J.: Ontheway: a prediction system for spatial locations. Winsys (August 2006)Google Scholar
  6. 6.
    Golledge, R.G: Wayfinding behaviour: Cognitive mapping and other spatial processes. John Hopkins University press, Baltimore (1999)Google Scholar
  7. 7.
    Golledge, R.G., Stimson, R.J.: Spatial Behavior: A Geographic Perspective. In: Spatial and Temporal Reasoning in Geographic Information Systems, Guildford Press, New York (2004)Google Scholar
  8. 8.
    Smith, S.P., Hart, J.: Evaluating distributed cognitive resources for wayfinding in a desktop virtual environment. In: 3dui, vol. 00, pp.3-10 (2006)Google Scholar
  9. 9.
    Tjan, B.S, Beckmann, P.J., Roy, R., Giudice, N., Legge, G.E.: Digital Sign System for Indoor Wayfinding for the Visually Paired. In: Cvprw, vol. 0, pp.30 (2005)Google Scholar
  10. 10.
    Moore, M., Todis, B., Fickas, S., Hung, P., Lemocello, R.: A Profile of Community Navigation in Adults with Chronic Cognitive Impairments. Brain Injury (2005)Google Scholar
  11. 11.
    Carmien, S., Dawe, M., Fischer, G., Gorman, A., Kintsch, A., Sullivan, J.: Socio-technical environments supporting people with cognitive disabilities with using public transportation. ACM Trans. Comput-Hum. Interact. 12(2), 233–262 (2005)CrossRefGoogle Scholar
  12. 12.
    Patterson, D.J., Liao, L., Gajos, K., Collier, M., Livic, N., Olson, K., Wang, S., Fox, D., Kautz, H.: Opportunity knocks: A system to provide cognitive assistance with transportation services. Ubiquitous Computing (2004)Google Scholar
  13. 13.
    Liu, A.L., Hile, H., Kautz, H., Borriello, G.: Indoor wayfinding: Developing a functional interface for individuals with cognitive impairments. In: Assets 2006. Proceedings of the 8th International ACM SIGACCESS Conference on Computing and Accesibility, pp. 95–102. ACM Press, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Ahamed, S.I, Haque, M., Stamm, K., Khan, A.J.: Wellness Assistant: A Virtual Wellness Assistant on a Handheld Device using Pervasive Computing. In: ACM SAC 2007. Proceedings of the 22nd Annual ACM Symposium on Applied Computing, Seoul, Korea, pp. 782–787 (2007)Google Scholar
  15. 15.
    Beeharee, K., Steed, A.: A natural wayfinding exploiting photos in pedestrian navigation systems. In: Mobile HCI 2006. Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, pp. 81–88 (2006). ISBN:1-59593-390-5Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • A. Fernández-Montes
    • 1
  • J. A. Álvarez
    • 1
  • J. A. Ortega
    • 1
  • Natividad Martínez Madrid
    • 2
  • Ralf Seepold
    • 2
  1. 1.Universidad de Sevilla, 41012 Sevilla, Spain, Escuela Técnica Superior de Ingeniería Informática 
  2. 2.Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain, Departamento de Ingeniería Telemática 

Personalised recommendations