Skip to main content

Movement Coordination in Applied Human-Human and Human-Robot Interaction

  • Conference paper
HCI and Usability for Medicine and Health Care (USAB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4799))

Included in the following conference series:

Abstract

The present paper describes a scenario for examining mechanisms of movement coordination in humans and robots. It is assumed that coordination can best be achieved when behavioral rules that shape movement execution in humans are also considered for human-robot interaction. Investigating and describing human-human interaction in terms of goal-oriented movement coordination is considered an important and necessary step for designing and describing human-robot interaction. In the present scenario, trajectories of hand and finger movements were recorded while two human participants performed a simple construction task either alone or with a partner. Different parameters of reaching and grasping were measured and compared in situations with and without workspace overlap. Results showed a strong impact of task demands on coordination behavior; especially the temporal parameters of movement coordination were affected. Implications for human-robot interaction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenbaum, D.A.: Human Motor Control. Academic Press, San Diego (1991)

    Google Scholar 

  2. Thrun, S.: Toward a framework for human-robot interaction. Human-Computer Interaction 19, 9–24 (2004)

    Article  Google Scholar 

  3. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  4. Stubbs, K., Wettergreen, D., Hinds, P.J.: Autonomy and common ground in human-robot interaction: a field study. IEEE Intelligent Systems, 42–50 (2007)

    Google Scholar 

  5. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317–1329 (1998)

    Article  Google Scholar 

  6. Wing, A.M., Turton, A., Frazer, C.: Grasp size and accuracy of approach in reaching. Journal of Motor Behavior 18, 245–260 (1986)

    Google Scholar 

  7. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics 61, 89–101 (1989)

    Article  Google Scholar 

  8. Rosenbaum, D.A., Meulenbroek, R.G.J., Vaughan, J.: Planning reaching and grasping movements: Theoretical premises and practical implications. Motor Control 2, 99–115 (2001)

    Google Scholar 

  9. Cujpers, R.H., Smeets, J.B.J., Brenner, E.: On the relation between object shape and grasping kinematics. Journal of Neurophysiology 91, 2598–2606 (2004)

    Article  Google Scholar 

  10. Bennis, N., Roby-Brami, A.: Coupling between reaching movement direction and hand orientation for grasping. Brain Research 952, 257–267 (2002)

    Article  Google Scholar 

  11. Rosenbaum, D.A., van Heugten, C.M., Caldwell, G.E.: From cognition to biomechanics and back: The end-state comfort effect and the middle-is-faster effect. Acta. Psychologica 94, 59–85 (1996)

    Article  Google Scholar 

  12. Ansuini, C., Santello, M., Massaccesi, S., Castiello, U.: Effects of end-goal on hand shaping. Journal of Neurophysiology 95, 2456–2465 (2006)

    Article  Google Scholar 

  13. Cohen, R.G., Rosenbaum, D.A.: Where grasps are made reveals how grasps are planned: generation and recall of motor plans. Experimental Brain Research 157, 486–495 (2004)

    Article  Google Scholar 

  14. Knoblich, G., Jordan, J.S.: Action coordination in groups and individuals: learning anticipatory control. Journal of Experimental Psychology: Learning, Memory, and Cognition 29, 1006–1016 (2003)

    Article  Google Scholar 

  15. Sebanz, N., Bekkering, H., Knoblich, G.: Joint action: bodies and minds moving together. Trends in Cognitive Sciences 10, 70–76 (2006)

    Article  Google Scholar 

  16. Meulenbroek, R.G.J., Bosga, J., Hulstijn, M., Miedl, S.: Joint action coordination in transfering objects. Experimental Brain Research 180, 333–343 (2007)

    Article  Google Scholar 

  17. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London 358, 539–602 (2003)

    Article  Google Scholar 

  18. Egersdörfer, S., Dragoi, D., Monkman, G.J., Füchtmeier, B., Nerlich, M.: Heavy duty robotic precision fracture repositioning. Industrial Robot: An International Journal 31, 488–492 (2004)

    Article  Google Scholar 

  19. Saint-Bauzel, L., Pasqui, V., Gas, B., Zarader, J.: Pathological sit-to-stand predictive models for control of a rehabilitation robotic device. In: Proceedings of the International Symposium on Robot and Human Interactive Communication, pp. 1173–1178 (2007)

    Google Scholar 

  20. Camarillo, D.B., Krummel, T.M., Salisbury, J.K.: Robot technology in surgery: past, present, and future. The. American Journal of Surgery 188, 2S–15S (2004)

    Article  Google Scholar 

  21. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences 3, 233–242 (1999)

    Article  Google Scholar 

  22. Breazeal, C., Scassellati, B.: Robots that imitate humans. Trends in Cognitive Sciences 6, 481–487 (2002)

    Article  Google Scholar 

  23. Polhemus: http://www.polhemus.com

  24. Rizzolatti, G., Fogassi, L., Gallese, V.: Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews 2, 661–670 (2001)

    Article  Google Scholar 

  25. Taylor, R.H.: A perspective on medical robotics. Proceedings of the IEEE 94, 1652–1664 (2006)

    Article  Google Scholar 

  26. Shibata, T.: An overview of human interactive robots for psychological enrichment. Proceedings of the IEEE 92, 1749–1758 (2004)

    Article  Google Scholar 

  27. Kanade, T.: A perspective on medical robotics. In: International Advanced Robotics Program Workshop on Medical Robotics (2004)

    Google Scholar 

  28. Breazeal, C.: Social interactions in HRI: the robot view. IEEE Transactions on Systems, Man, and Cybernetics – Part. C: Applications and Reviews 34, 181–186 (2004)

    Article  Google Scholar 

  29. Brennan, S.E., Clark, H.H.: Conceptual pacts and lexical choice in conversation. Journal of Experimental Psychology: Learning, Memory, and Cognition 22, 1482–1493 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Holzinger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schubö, A., Vesper, C., Wiesbeck, M., Stork, S. (2007). Movement Coordination in Applied Human-Human and Human-Robot Interaction. In: Holzinger, A. (eds) HCI and Usability for Medicine and Health Care. USAB 2007. Lecture Notes in Computer Science, vol 4799. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76805-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76805-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76804-3

  • Online ISBN: 978-3-540-76805-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics