Skip to main content

Swarm Intelligence Algorithms in Bioinformatics

  • Chapter
Computational Intelligence in Bioinformatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 94))

Summary

Research in bioinformatics necessitates the use of advanced computing tools for processing huge amounts of ambiguous and uncertain biological data. Swarm Intelligence (SI) has recently emerged as a family of nature inspired algorithms, especially known for their ability to produce low cost, fast and reasonably accurate solutions to complex search problems. In this chapter, we explore the role of SI algorithms in certain bioinformatics tasks like microarray data clustering, multiple sequence alignment, protein structure prediction and molecular docking. The chapter begins with an overview of the basic concepts of bioinformatics along with their biological basis. It also gives an introduction to swarm intelligence with special emphasis on two specific SI algorithms well-known as Particle Swarm Optimization (PSO) and Ant Colony Systems (ACS). It then provides a detailed survey of the state of the art research centered around the applications of SI algorithms in bioinformatics. The chapter concludes with a discussion on how SI algorithms can be used for solving a few open ended problems in bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldi P and Brunak S (1998) Bioinformatics: The Machine Learning Approach, MIT Press, Cambridge, MA.

    Google Scholar 

  2. Altman RB, Valencia A, Miyano S and Ranganathan, S (2001) Challenges for intelligent systems in biology, IEEE Intelligent Systems, vol. 16, no. 6, pp. 14–20.

    Article  Google Scholar 

  3. Haykin S. (1999) Neural Networks: A Comprehensive Foundation, Prentice Hall.

    Google Scholar 

  4. Holland JH (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.

    Google Scholar 

  5. Goldberg DE (1975) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.

    Google Scholar 

  6. Mitra S and Hayashi Y (2006) Bioinformatics with soft computing, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 36, pp. 616–635.

    Article  Google Scholar 

  7. Bonabeau E, Dorigo M, Theraulaz G (2001) Swarm intelligence: From natural to artificial systems. Journal of Artificial Societies and Social Simulation, 4(1).

    Google Scholar 

  8. Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence. Wiley.

    Google Scholar 

  9. Beni G and Wang U (1989) Swarm intelligence in cellular robotic systems. In NATO Advanced Workshop on Robots and Biological Systems, Il Ciocco, Tuscany, Italy.

    Google Scholar 

  10. Kennedy J, Eberhart R (1995) Particle swarm optimization, In Proceedings of IEEE International conference on Neural Networks. 1942–1948.

    Google Scholar 

  11. Dorigo M (1992) Optimization, learning, and natural algorithms, Ph.D. dissertation (in Italian), Dipartimento di Elettronica, Politecnico di Milano, Milano, Italy.

    Google Scholar 

  12. Dorigo M, Di Caro G and Gambardella L (1999) Ant colony optimization: A new metaheuristic. In PJ Angeline, Z Michalewicz, M Schoenauer, X Yao, and A Zalzala, (eds), Proceedings of the Congress on Evolutionary Computation, IEEE Press, Vol. 2, pp. 1470–1477.

    Google Scholar 

  13. Lewin B (1995) Genes VII. Oxford University Press, New York, NY.

    Google Scholar 

  14. Wu AS and Lindsay RK (1996) A Survey of Intron Research in Genetics, In Proc. 4th Conf. of on Parallel Problem Solving from Nature, pp. 101–110.

    Google Scholar 

  15. Setubal J and Meidanis J (1999) Introduction to Computational Molecular Biology, International Thomson Publishing, 20 park plaza, Boston, MA 02116.

    Google Scholar 

  16. http://en.wikipedia.org/wiki/DNA_microarray

  17. Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective Memory and Spatial Sorting in Animal Groups, Journal of Theoretical Biology, 218, pp. 1–11.

    Article  MathSciNet  Google Scholar 

  18. Krause J and Ruxton GD (2002) Living in Groups. Oxford: Oxford University Press.

    Google Scholar 

  19. Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools: relative role of lateral line and vision. Journal of Comparative Physiology, 135, pp. 315–325.

    Article  Google Scholar 

  20. Partridge BL (1982) The structure and function of fish schools. Science American, 245, pp. 90–99.

    Google Scholar 

  21. Major PF, Dill LM (1978) The three-dimensional structure of airborne bird flocks. Behavioral Ecology and Sociobiology, 4, pp. 111–122.

    Article  Google Scholar 

  22. Branden CI and Tooze J (1999) Introduction to Protein Structure: 2nd edition. Garland Publishing, New York, 2nd edition.

    Google Scholar 

  23. Grosan C, Abraham A and Monica C (2006) Swarm Intelligence in Data Mining, in Swarm Intelligence in Data Mining, Abraham A, Grosan C and Ramos V (Eds), Springer, pp. 1–16.

    Google Scholar 

  24. Milonas MM (1994) Swarms, phase transitions, and collective intelligence, In Langton CG Ed., Artificial Life III, Addison Wesley, Reading, MA.

    Google Scholar 

  25. Serra R and Zanarini G (1990) Complex Systems and Cognitive Processes. New York, NY: Springer-Verlag.

    Google Scholar 

  26. Flake G (1999) The Computational Beauty of Nature. Cambridge, MA: MIT Press.

    Google Scholar 

  27. Kennedy J, Eberhart R and Shi Y (2001) Swarm Intelligence, Morgan Kaufmann Academic Press.

    Google Scholar 

  28. Dorigo M and Gambardella LM (1996) A Study of Some Properties of Ant Q, In Proc. PPSN IV - 4th Int. Conf. Parallel Problem Solving From Nature, Berlin, Germany: Springer-Verlag, pp. 656–665.

    Chapter  Google Scholar 

  29. Dorigo M and Gambardella LM (1997) Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE Trans. Evol. Comput., vol. 1, pp. 53–66.

    Article  Google Scholar 

  30. Deneubourg JL (1997) Application de I’ordre par fluctuations? la descriptio de certaines? tapes de la construction dun id chez les termites, Insect Sociaux, vol. 24, pp. 117–130.

    Article  Google Scholar 

  31. Dorigo M, Maniezzo V and Colorni A (1996) The ant system: Optimization by a colony of cooperating agents, IEEE Trans. Syst. Man Cybern. B, vol. 26.

    Google Scholar 

  32. Kennedy J (1999) Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance, Proceedings of the 1999 Congress of Evolutionary Computation, vol. 3, IEEE Press, pp. 1931–1938.

    Google Scholar 

  33. Kennedy J and Mendes R (2002) Population structure and particle swarm performance. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), IEEE Press, pp. 1671–1676.

    Google Scholar 

  34. Watts DJ and Strogatz SH (1998) Collective dynamics of small-world networks. Nature, 393, 440–442.

    Article  Google Scholar 

  35. Dall’Asta L, Baronchelli A, Barrat A and Loreto V (2006) Agreement dynamics on small-world networks. Europhysics Letters.

    Google Scholar 

  36. Barrat A and Weight M (2000) On the properties of small-world network models. The European Physical Journal, 13, pp. 547–560.

    Google Scholar 

  37. Moore C and Newman MEJ (2000) Epidemics and percolation in small-world networks. Physics. Review. E 61, 5678–5682.

    Article  Google Scholar 

  38. Jasch F and Blumen A (2001) Trapping of random walks on small-world networks. Physical Review E 64, 066104.

    Article  Google Scholar 

  39. Chen J, Antipov E, Lemieux B, Cedeno W, and Wood DH (1999) DNA computing implementing genetic algorithms, Evolution as Computation, Springer Verlag, New York, pp. 39–49.

    Google Scholar 

  40. Vesterstrom J and Thomsen R (2004) A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems, In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 04), IEEE Press, pp. 1980–1987.

    Google Scholar 

  41. Das S, Konar A, Chakraborti UK (2005) A New Evolutionary Algorithm Applied to the Design of Two-dimensional IIR Filters in ACM-SIGEVO Proceedings of Genetic and Evolutionary Computation Conference (GECCO-2005), Washington DC.

    Google Scholar 

  42. Hassan R, Cohanim B and de Weck O (2005) Comparison of Particle Swarm Optimization and the Genetic Algorithm, AIAA-2005-1897, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.

    Google Scholar 

  43. Luscombe NM, Greenbaum D and Gerstein M (2001) What is Bioinformatics? A Proposed Definition and Overview of the Field, Yearbook of Medical Informatics, pp. 83–100.

    Google Scholar 

  44. Quackenbush J (2001) Computational analysis of microarray data, National Review of Genetics, vol. 2, pp. 418–427.

    Article  Google Scholar 

  45. Special Issue on Bioinformatics, IEEE Computer, vol. 35, July 2002.

    Google Scholar 

  46. Jain AK, Murty MN and Flynn, PJ (1999) Data clustering: a review, ACM Computing Surveys, vol. 31, no. 3, pp. 264–323.

    Article  Google Scholar 

  47. Baker TK, Carfagna MA, Gao H, Dow ER, Li O, Searfoss GH, and Ryan TP (2001) Temporal Gene Expression Analysis of Monolayer Cultured Rat Hepatocytes, Chem. Res. Toxicol., Vol. 14, No. 9.

    Google Scholar 

  48. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D and Levine AJ (1999) Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays, Proc. Natl. Acad. Sci. USA, Cell Biology, Vol. 96, pp. 6745–6750.

    Article  Google Scholar 

  49. Maurice G and Kendall M (1961) The Advanced Theory of Statistics, Vol. 2, Charles Griffin and Company Limited.

    Google Scholar 

  50. Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, Barker JL, and Somogyi R (1998) Large-scale temporal gene expression mapping of central nervous system development, Proc. Natl. Acad. Sci. USA, Neurobiology, Vol. 95, pp. 334–339.

    Article  Google Scholar 

  51. Spellman EM, Brown PL, Brown D (1998) Cluster Analysis and Display of Genome-wide expression patterns, Proc. Natl. Acad. Sci. USA 95: 14863–14868.

    Article  Google Scholar 

  52. Yeung KY, Ruzzo WL (2001) Principal Component Analysis for Clustering Gene Expression Data, Bioinformatics, 17, pp. 763–774.

    Article  Google Scholar 

  53. Raychaudhuri S, Stuart JM and Altman RB (2000) Principal Components Analysis to Summarize Microarray Experiments: Application to Sporulation Time Series, Pacific Symposium on Biocomputing 2000, Honolulu, Hawaii, pp. 452–463.

    Google Scholar 

  54. Li L, Weinberg CR, Darden TA and Pedersen LG (2001) Gene Selection for Sample Classification Based on Gene Expression Data: Study of Sensitivity to Choice of Parameters of the GA/KNN Method, Bioinformatics, 17, pp. 1131–1142.

    Article  Google Scholar 

  55. Herrero J, Valencia A and Dopazo J (2001) A hierarchical unsupervised growing neural network for clustering gene expression patterns, Bioinformatics, 17, pp. 126–136.

    Article  Google Scholar 

  56. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES and Golub TR (1999) Interpreting patterns of gene expression with self organizing maps: Methods and applications to hematopoietic differentiation. PNAS, 96, pp. 2907–2912.

    Article  Google Scholar 

  57. Toronen P, Kolehmainen M, Wong G, Castren E (1999) Analysis of Gene Expression Data Using Self-organizing Maps, FEBS letters 451, pp. 142–146.

    Article  Google Scholar 

  58. Xiao X, Dow ER, Eberhart RC, Miled ZB and Oppelt RJ (2003) Gene Clustering Using Self-Organizing Maps and Particle Swarm Optimization, Proc of the 17th International Symposium on Parallel and Distributed Processing (PDPS ’03), IEEE Computer Society, Washington DC.

    Google Scholar 

  59. Kohonen T (1995) Self-organizing Maps, 2nd ed., Springer-Verlag, Berlin.

    Google Scholar 

  60. http://cnx.org/content/m11456/latest/

  61. Liu BF, Chen HM, Huang HL, Hwang SF and Ho SY (2005) Flexible protein-ligand docking using particle swarm optimization, in Proc. of Congress on Evolutionary Computation (CEC 2005), IEEE Press, Washinton DC.

    Google Scholar 

  62. Jones G, Willett P, Glen RC, Leach AR and Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3): pp. 727–748.

    Article  Google Scholar 

  63. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK and Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14): pp. 1639–1662.

    Article  Google Scholar 

  64. Ewing TJA, Makino S, Skillman AG and Kuntz ID (2001) Dock 4.0: Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design, 15(5): pp. 411–428.

    Article  Google Scholar 

  65. Lipman DJ, Altschul SF and Kececioglu JD (1989). A tool for multiple sequence alignment. Proc. Natl. Acad. Sci. USA, 86: pp. 4412–4415.

    Article  Google Scholar 

  66. Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25, pp. 351–360.

    Article  Google Scholar 

  67. Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, vol. 22, No. 22, pp. 4673–4680.

    Article  Google Scholar 

  68. Chen Y, Pan Y, Chen L, Chen J (2006) Partitioned optimization algorithms for multiple sequence alignment, Proc. of the 20th International Conference on Advanced Information Networking and Applications - (AINA’06), IEEE Computer Society Press, Washington DC., Volume 02, pp. 618–622.

    Google Scholar 

  69. Notredame C and Higgins DG, SAGA: sequence alignment by genetic algorithm, Nucleic Acids Research, vol. 24, no. 8, pp. 1515–1524.

    Google Scholar 

  70. Rasmussen TK and Krink T (2003) Improved hidden Markov model training for multiple sequence alignment by a particle swarm optimization-evolutionary algorithm hybrid, BioSystems 72 (2003).

    Google Scholar 

  71. Stolcke A and Omohundro S (1993) Hidden Markov Model induction by Bayesian model merging. In NIPS 5, pp. 11–18.

    Google Scholar 

  72. Hamam Y and Al-Ani T (1996). Simulated annealing approach for Hidden Markov Models. 4th WG-7.6 Working Conference on Optimization-Based Computer-Aided Modeling and Design, ESIEE, France.

    Google Scholar 

  73. Felsenstein J (1973). Maximum likelihood estimation of evolutionary trees from continuous characters.Am. J. Hum. Gen. 25: 471–492.

    Google Scholar 

  74. Lewis PO (1998), A genetic algorithm for maximum likelihood phylogeny inference using nucleotide sequence data, Molecular Biology and Evolution, vol. 15, no. 3, pp. 277–283.

    Google Scholar 

  75. Lemmon AR and Milinkovitch MC (2002) The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation, Proc. Natl Acad Sci U S A., vol. 99, no. 16, pp. 10516–10521.

    Article  Google Scholar 

  76. Perretto M and Lopes HS (2005) Reconstruction of phylogenetic trees using the ant colony optimization paradigm, Genetic and Molecular Research 4 (3), pp. 581–589.

    Google Scholar 

  77. Ando S and Iba H (2002) Ant algorithm for construction of evolutionary tree, in Proc. of Congress on Evolutionary Computation (CEC 2002), IEEE Press, USA.

    Google Scholar 

  78. Neethling M and Engelbrecht AP (2006) Determining RNA Secondary Structure using Set-based Particle Swarm Optimization, in Proc. of Congress on Evolutionary Computation (CEC 2006), IEEE Press, USA.

    Google Scholar 

  79. Hofacker IL (2003) Vienna rna secondary structure server, Nucleic Acids Research, vol. 31:13, pp. 3429–3431.

    Article  Google Scholar 

  80. Lau KF and Dill KA (1989) A lattice statistical mechanics model of the conformation and sequence space of proteins. Macromolecules 22, pp. 3986–3997.

    Article  Google Scholar 

  81. Richards FM (1977) Areas, volumes, packing, and protein structures. Annu. Rev. Biophys. Bioeng. 6, pp. 151–176.

    Article  Google Scholar 

  82. Krasnogor N, Hart WE, Smith J and Pelta DA (1999) Protein structure prediction with evolutionary algorithms. Proceedings of the Genetic & Evolutionary Computing Conf (GECCO 1999).

    Google Scholar 

  83. Shmygelska A, Hoos HH (2003) An Improved Ant Colony Optimization Algorithm for the 2D HP Protein Folding Problem. Canadian Conference on AI 2003: 400–417.

    MathSciNet  Google Scholar 

  84. Shmygelska A, Hoos HH (2005) An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics 6:30.

    Article  Google Scholar 

  85. Chu D, Till M and Zomaya A (2005) Parallel Ant Colony Optimization for 3D Protein Structure Prediction using the HP Lattice Model, Proc. of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05), IEEE Computer Society Press.

    Google Scholar 

  86. Meksangsouy P and Chaiyaratana N (2003) DNA fragment assembly using an ant colony system algorithm, in Proc. of Congress on Evolutionary Computation (CEC 2006), IEEE Press, USA.

    Google Scholar 

  87. Ando S and Iba H (2001) Inference of gene regulatory model by genetic algorithms, Proc. Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 712–719.

    Article  Google Scholar 

  88. Behera N and Nanjundiah V (1997) Trans-gene regulation in adaptive evolution: a genetic algor-ithm model, Journal of Theoretical Biology, vol. 188, pp. 153–162.

    Article  Google Scholar 

  89. Ando S and Iba H (2000) Quantitative Modeling of Gene Regulatory Network - Identifying the Network by Means of Genetic Algorithms, The Eleventh Genome Informatics Workshop, 2000.

    Google Scholar 

  90. Ando S and Iba H (2001) The Matrix Modeling of Gene Regulatory Networks - Reverse Engineering by Genetic Algorithms, Proc. Atlantic Symposium on Computational Biology and Genome Information Systems and Technology.

    Google Scholar 

  91. Tominaga D, Okamoto M, Maki Y, Watanabe S and Eguchi Y (1999) Nonlinear Numerical optimization technique based on a genetic algorithm for inverse Problems: Towards the inference of genetic networks, Computer Science and Biology (Proc. German Conf. on Bioinformatics), pp. 127–140.

    Google Scholar 

  92. Branden CI and Tooze J (1999) Introduction to Protein Structure: 2nd edition. Garland Publishing, New York, 2nd edition.

    Google Scholar 

  93. Liu Y and Beveridge DL (2002) Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, amber energy functions, and a generalized born/solvent accessibility solvation model. Proteins, 46.

    Google Scholar 

  94. Unger R and Moult J (1993) A genetic algorithm for 3d protein folding simulations. In 5th Proc. Intl. Conf. on Genetic Algorithms, pp. 581–588.

    Google Scholar 

  95. Pokarowski P, Kolinski A and Skolnick J (2003) A minimal physically realistic protein-like lattice model: Designing an energy landscape that ensures all-or-none folding to a unique native state. Biophysics Journal, 84: pp. 1518–26.

    Article  Google Scholar 

  96. Kitagawa U and Iba H (2002) Identifying Metabolic Pathways and Gene Regulation Networks with Evolutionary Algorithms, in Evolutionary Computation in Bioinformatics, Fogel GB and Corne DW (Eds.) Morgan Kaufmann.

    Google Scholar 

  97. Shayne CG (2005), Drug Discovery Handbook, Wiley-Interscience.

    Google Scholar 

  98. Madsen U. (2002), Textbook of Drug Design and Discovery, CRC Press, USA.

    Google Scholar 

  99. Venkatasubramanian V, Chan K and Caruthers JM (1995). Evolutionary Design of Molecules with Desired Properties Using the Genetic Algorithm, J. Chem. Inf. Comp. Sci., 35, pp. 188–195.

    Google Scholar 

  100. Glen RC and Payne AWR (1995) A Genetic Algorithm for the Automated Generation of Molecule within Constraints. J. Computer-Aided Molecular Design, 9, pp. 181–202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, S., Abraham, A., Konar, A. (2008). Swarm Intelligence Algorithms in Bioinformatics. In: Kelemen, A., Abraham, A., Chen, Y. (eds) Computational Intelligence in Bioinformatics. Studies in Computational Intelligence, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76803-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76803-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76802-9

  • Online ISBN: 978-3-540-76803-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics