Skip to main content

Linear Time Approximation Algorithms for Degree Constrained Subgraph Problems

  • Chapter
Research Trends in Combinatorial Optimization

Summary

Many real-world problems require graphs of such large size that polynomial time algorithms are too costly as soon as their runtime is superlinear. Examples include problems in VLSI-design or problems in bioinformatics. For such problems the question arises: What is the best solution that can be obtained in linear time? We survey linear time approximation algorithms for some classical problems from combinatorial optimization, e.g. matchings and branchings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Althaus, E., Mehlhorn, K.: Maximum network flow with floating point arithmetic. Inf. Process. Lett. 66(3), 109–113 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Avis, D.: Two greedy heuristics for the weighted matching problem. Congr. Numer. XXI, 65–76 (1978). Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (1978)

    MathSciNet  Google Scholar 

  • Bast, H., Mehlhorn, K., Schäfer, G., Tamaki, H.: Matching algorithms are fast in sparse random graphs. Theory Comput. Syst. 39(1), 3–14 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Berge, C.: Two theorems in graph theory. Proc. Natl. Acad. Sci. U.S.A. 43(9), 842–844 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  • Blum, N.: A new approach to maximum matching in general graphs. In: Proc. of 17th ICALP (1990). Lecture Notes in Computer Science, vol. 443, pp. 586–597. Springer, Berlin (1990)

    Google Scholar 

  • Bock, F.: An algorithm to construct a minimum directed spanning tree in a directed network. In: Avi Itzhak, B. (ed.) Developments in Operations Research, Proceedings of the Third Annual Israel Conference on Operations Research, July 1969, vol. 1, pp. 29–44. Gordon and Breach, New York (1971). Paper 1-2

    Google Scholar 

  • Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Chu, Y.-J., Liu, T.-H.: On the shortest arborescence of a directed graph. Sci. Sin. 14(10), 1396–1400 (1965)

    MATH  Google Scholar 

  • Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. Comput. 11(2), 138–148 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Drake, D.E., Hougardy, S.: Linear time local improvements for weighted matchings in graphs. In: Jansen, K. et al. (eds.) International Workshop on Experimental and Efficient Algorithms (WEA) 2003. Lecture Notes in Computer Science, vol. 2647, pp. 107–119. Springer, Berlin (2003a)

    Chapter  Google Scholar 

  • Drake, D.E., Hougardy, S.: A simple approximation algorithm for the weighted matching problem. Inf. Process. Lett. 85(4), 211–213 (2003b)

    Article  MathSciNet  Google Scholar 

  • Drake Vinkemeier, D.E., Hougardy, S.: A linear-time approximation algorithm for weighted matchings in graphs. ACM Trans. Algorithms 1(1), 107–122 (2005)

    Article  MathSciNet  Google Scholar 

  • Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)

    MATH  MathSciNet  Google Scholar 

  • Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand., B Math. Math. Phys. 71(4), 233–240 (1967)

    MATH  MathSciNet  Google Scholar 

  • Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci. 51(2), 261–272 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Fischer, T., Goldberg, A.V., Haglin, D.J., Plotkin, S.: Approximating matchings in parallel. Inf. Process. Lett. 46(3), 115–118 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    MATH  MathSciNet  Google Scholar 

  • Frank, A.: On Kuhn’s Hungarian method—a tribute from Hungary. Nav. Res. Logist. 52(1), 2–5 (2005)

    Article  MATH  Google Scholar 

  • Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows. VIII. A revised theory of phase-ordered algorithms and the \(O(\sqrt{n}m\log (n^{2}/m)/\log n)\) bound for the nonbipartite cardinality matching problem. Networks 41(3), 137–142 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: STOC ’83: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 448–456. ACM Press, New York (1983)

    Chapter  Google Scholar 

  • Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: SODA ’90: Proceedings of the First Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 434–443. SIAM, Philadelphia (1990)

    Google Scholar 

  • Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems. J. Algorithms 9(3), 411–417 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph-matching problems. J. Assoc. Comput. Mach. 38(4), 815–853 (1991)

    MATH  MathSciNet  Google Scholar 

  • Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6(2), 109–122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Goldberg, A.V., Karzanov, A.V.: Maximum skew-symmetric flows and matchings. Math. Program. 100(3), 537–568 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Harvey, N.J.A.: Algebraic structures and algorithms for matching and matroid problems. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 531–542. IEEE Computer Society, Washington (2006)

    Google Scholar 

  • Hassin, R., Lahav (Haddad), S.: Maximizing the number of unused colors in the vertex coloring problem. Inf. Process. Lett. 52(2), 87–90 (1994)

    Article  MATH  Google Scholar 

  • Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  • Jenkyns, T.A.: The efficacy of the greedy algorithm. Congr. Numer. 17, 341–350 (1976)

    MathSciNet  Google Scholar 

  • Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)

    Article  MathSciNet  Google Scholar 

  • Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. Ann. Discrete Math. 2, 65–74 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  • Mehlhorn, K., Schäfer, G.: Implementation of O(nmlog n) weighted matchings in general graphs: the power of data structures. ACM J. Exp. Algorithmics 7, 4 (2002)

    Article  Google Scholar 

  • Mestre, J.: Greedy in approximation algorithms. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. Lecture Notes in Computer Science, vol. 4168, pp. 528–539. Springer, Berlin (2006)

    Chapter  Google Scholar 

  • Micali, S., Vazirani, V.V.: An \(O(\sqrt {|v|}\cdot |E|)\) algorithm for finding maximum matching in general graphs. In: Proc. of 21st Annual Symposium on Foundations of Computer Science (21st FOCS, Syracuse, New York, 1980), pp. 17–27 (1980)

    Google Scholar 

  • Motwani, R.: Average-case analysis of algorithms for matchings and related problems. J. Assoc. Comput. Mach. 41(6), 1329–1356 (1994)

    MATH  MathSciNet  Google Scholar 

  • Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04), pp. 248–255. IEEE Computer Society, Washington (2004)

    Chapter  Google Scholar 

  • Petersen, J.: Die Theorie der regulären Graphs. Acta Math. 15(1), 193–220 (1891)

    Article  MathSciNet  Google Scholar 

  • Pettie, S., Sanders, P.: A simpler linear time 2/3−ε approximation for maximum weight matching. Inf. Process. Lett. 91(6), 271–276 (2004)

    Article  MathSciNet  Google Scholar 

  • Preis, R.: Linear time \(\frac{1}{2}\) -approximation algorithm for maximum weighted matching in general graphs. In: Meinel, C., Tison, S. (eds.) Symposium on Theoretical Aspects in Computer Science (STACS). Lecture Notes in Computer Science, vol. 1563, pp. 259–269. Springer, Berlin (1999)

    Google Scholar 

  • Shiloach, Y.: Another look at the degree constrained subgraph problem. Inf. Process. Lett. 12(2), 89–92 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness of the \(O(\sqrt{V}E)\) general graph maximum matching algorithm. Combinatorica 14(1), 71–109 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Ziegler, V.: Approximating optimum branchings in linear time. Technical report, Humboldt-Universität zu Berlin, Institut für Informatik (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hougardy, S. (2009). Linear Time Approximation Algorithms for Degree Constrained Subgraph Problems. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_9

Download citation

Publish with us

Policies and ethics