Skip to main content

Spatiotemporal Organization of Pre-mRNA Splicing Proteins in Plants

  • Chapter
Book cover Nuclear pre-mRNA Processing in Plants

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 326))

The general organization of eukaryotic nuclei, including plant nuclei, into functional domains is now widely recognized. Conventional immunocytochemistry and visualization of proteins fused to fluorescent proteins (FP) have revealed that in plants, RNA and protein components of pre-mRNA splicing are spatially organized depending on the stage of cell cycle, development, and the cell’s physiological state. Application of some of the latest microscopy techniques, which reveal biophysical properties such as diffusion and interaction properties of proteins, has begun to provide important insights into the functional organization of spliceosomal proteins in plants. Although some progress has been made in understanding the spatial and temporal organization of splicing machinery in plants, the mechanisms that regulate this organization and its functional consequences remain unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali GS, Reddy AS (2006) ATP, phosphorylation and transcription regulate the mobility of plant splicing factors. J Cell Sci 119:3527–3538

    Article  PubMed  CAS  Google Scholar 

  • Ali GS, Golovkin A, Reddy AS (2003) Nuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein. Plant J 36:883–893

    Article  PubMed  CAS  Google Scholar 

  • Beven AF, Simpson GG, Brown JW, Shaw PJ (1995) The organization of spliceosomal components in the nuclei of higher plants. J Cell Sci 108:509–518

    PubMed  CAS  Google Scholar 

  • Boudonck K, Dolan L, Shaw PJ (1998) Coiled body numbers in the Arabidopsis root epidermis are regulated by cell type, developmental stage and cell cycle parameters. J Cell Sci 111:3687–3694

    PubMed  CAS  Google Scholar 

  • Boudonck K, Dolan L, Shaw PJ (1999) The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell 10:2297–2307

    PubMed  CAS  Google Scholar 

  • Cui P, Moreno Diaz de la Espina S (2003) Sm and U2B″ proteins redistribute to different nuclear domains in dormant and proliferating onion cells. Planta 217:21–31

    PubMed  CAS  Google Scholar 

  • de la Fuente van Bentem S, Anrather D, Roitinger E, Djamei A, Hufnagl T et al. (2006) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res 34:3267–3278

    Article  PubMed  Google Scholar 

  • Docquier S, Tillemans V, Deltour R, Motte P (2004) Nuclear bodies and compartmentalization of pre-mRNA splicing factors in higher plants. Chromosoma 112:255–266

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Hearn S, Spector DL (2004) Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis. Mol Biol Cell 15:2664–2673

    Article  PubMed  CAS  Google Scholar 

  • Fisher CE, Brown DM, Shaw J, Beswick PH, Donaldson K (1998) Respirable fibres: surfactant coated fibres release more Fe3+ than native fibres at both pH 4.5 and 7.2. Ann Occup Hyg 42:337–345

    PubMed  CAS  Google Scholar 

  • Glyn MC, Leitch AR (1995) The distribution of a spliceosome protein in cereal (Triticeae) interphase nuclei from cells with different metabolic activities and through the cell cycle. Plant J 8:531–540

    Article  PubMed  CAS  Google Scholar 

  • Golovkin G, Reddy ASN (1999) An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1–70K protein. J Biol Chem 274:36428–36438

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Steitz JA (2005) SRprises along a messenger’s journey. Mol Cell 17:613–615

    Article  PubMed  CAS  Google Scholar 

  • Kalyna K, Barta A (2004) A plethora of plant serine/arginine-rich proteins: redundancy or evolution of novel gene functions? Biochem Soc Trans 32:561–564

    Article  PubMed  CAS  Google Scholar 

  • Kruhlak MJ, Lever MA, Fischle W, Verdin E, Bazett-Jones DP et al. (2000) Reduced mobility of the alternate splicing factor (ASF) through the nucleoplasm and steady state speckle compartments. J Cell Biol 150:41–51

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  PubMed  CAS  Google Scholar 

  • Li X, Manley JL (2005) New talents for an old acquaintance: the SR protein splicing factor ASF/SF2 functions in the maintenance of genome stability. Cell Cycle 4:1706–1708

    PubMed  CAS  Google Scholar 

  • Li X, Manley JL (2006) Cotranscriptional processes and their influence on genome stability. Genes Dev 20:1838–1847

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic´ ZJ, Barta A (2002) Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    Article  PubMed  Google Scholar 

  • Lorkovic´ ZJ, Barta A (2004) Compartmentalization of the splicing machinery in plant cell nuclei. Trends Plant Sci 9:565–568

    Article  PubMed  Google Scholar 

  • Lorkovic´ ZJ, Hilscher J, Barta A (2004) Use of fluorescent protein tags to study nuclear organization of the spliceosomal machinery in transiently transformed living plant cells. Mol Biol Cell 15:3233–3243

    Article  PubMed  Google Scholar 

  • Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    Article  PubMed  CAS  Google Scholar 

  • Misteli T, Caceres JF, Spector DL (1997) The dynamics of a pre-mRNA splicing factor in living cells. Nature 387:523–527

    Article  PubMed  CAS  Google Scholar 

  • Misteli T, Caceres JF, Clement JQ, Krainer AR, Wilkinson MF et al. (1998) Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo. J Cell Biol 143:297–307

    Article  PubMed  CAS  Google Scholar 

  • Palusa SG, Ali GS, Reddy ASN (2007) Alternative splicing of pre-mRNA of Arabidopsis serine/arginine-rich proteins:regulation by hormones and stresses. Plant J 49:1091–1107

    Article  PubMed  CAS  Google Scholar 

  • Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW et al. (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2004) Plant serine/arginine-rich proteins and their role in pre-mRNA splicing. Trends Plant Sci 9:541–547

    Article  PubMed  CAS  Google Scholar 

  • Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the Genomic Era. Annu Rev Plant Biol 58:267–294

    Article  PubMed  CAS  Google Scholar 

  • Reits EA, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3: E145–147

    Article  PubMed  CAS  Google Scholar 

  • Riera R, Redko Y, Leung J (2006) Arabidopsis RNA-binding protein UBA2a relocalizes into nuclear speckles in response to abscisic acid. FEBS Lett 580:4160–4165

    Article  PubMed  CAS  Google Scholar 

  • Sanford JR, Longman D, Caceres JF (2003) Multiple roles of the SR protein family in splicing regulation. In: Jeanteur P, editor. Regulation of alternative splicing. New York: Springer. pp. 33–58

    Google Scholar 

  • Saudan PJ, Shaw L, Brown MA (1998) Urinary calcium/creatinine ratio as a predictor of preeclampsia. Am J Hypertens 11:839–843

    Article  PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Sessa G, Fluhr R (2000) The ethylene-inducible PK12 kinase mediates the phosphorylation of SR splicing factors. Plant J 21:91–96

    Article  PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Aviv D, Davydov O, Fluhr R (2003) Alternative splicing modulation by a LAMMER kinase impinges on developmental and transcriptome expression. Plant Cell 15:926–938

    Article  PubMed  CAS  Google Scholar 

  • Schmiedeberg L, Weisshart K, Diekmann S, Meyer Zu Hoerste G, Hemmerich P (2004) High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol Biol Cell 15:2819–2833

    Article  PubMed  CAS  Google Scholar 

  • Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM et al. (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304:1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ, Brown JW (2004) Plant nuclear bodies. Curr Opin Plant Biol 7:614–620

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ, Beven AF, Leader DJ, Brown JW (1998) Localization and processing from a polycistronic precursor of novel snoRNAs in maize. J Cell Sci 111:2121–2128

    PubMed  Google Scholar 

  • Sprague BL, McNally JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15:84–91

    Article  PubMed  CAS  Google Scholar 

  • Testillano PS, Sanchez-Pina MA, Olmedilla A, Fuchs JP, Risueno MC (1993) Characterization of the interchromatin region as the nuclear domain containing snRNPs in plant cells. A cytochemical and immunoelectron microscopy study. Eur J Cell Biol 61:349–361

    PubMed  CAS  Google Scholar 

  • Tillemans V, Dispa L, Remacle C, Collinge T, Motte P (2005) Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells. Plant J 41:567–582

    Article  PubMed  CAS  Google Scholar 

  • Tillemans V, Leponce I, Rausin G, Dispa L, Motte P (2006) Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. Plant Cell 18:3218–3234

    Article  PubMed  CAS  Google Scholar 

  • Vargas DY, Raj A, Marras SA, Kramer FR, Tyagi S (2005) Mechanism of mRNA transport in the nucleus. Proc Natl Acad Sci USA 102:17008–17013

    Article  PubMed  CAS  Google Scholar 

  • Walter W, Chaban C, Schutze K, Batistic O, Weckermann K et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  PubMed  CAS  Google Scholar 

  • Wang BB, Brendel V (2004) The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 5: R102

    Article  PubMed  Google Scholar 

  • Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA 103:7175–7180

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ali, G.S., Reddy, A.S.N. (2008). Spatiotemporal Organization of Pre-mRNA Splicing Proteins in Plants. In: Reddy, A.S.N., Golovkin, M. (eds) Nuclear pre-mRNA Processing in Plants. Current Topics in Microbiology and Immunology, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76776-3_6

Download citation

Publish with us

Policies and ethics