Skip to main content

U12-Dependent Intron Splicing in Plants

  • Chapter
Nuclear pre-mRNA Processing in Plants

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 326))

U12-dependent (U12) introns have persisted in the genomes of plants since the ancestral divergence between plants and metazoans. These introns, which are rare, are found in a range of genes that include essential functions in DNA replication and RNA metabolism and are implicated in regulating the expression of their host genes. U12 introns are removed from pre-mRNAs by a U12 intronspecific spliceosome. Although this spliceosome shares many properties with the more abundant U2-dependent (U2) intron spliceosome, four of the five small nuclear RNAs (snRNAs) required for splicing are different and specific for the unique splicing of U12 introns. Evidence in plants so far indicates that splicing signals of plant U12 introns and their splicing machinery are similar to U12 intron splicing in other eukaryotes. In addition to the high conservation of splicing signals, plant U12 introns also retain unique characteristic features of plant U2 introns, such as UA-richness, which suggests a requirement for plant-specific components for both the U2 and U12 splicing reaction. This chapter compares U12 and U2 splicing and reviews what is known about plant U12 introns and their possible role in gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alioto TS (2007) U12DB: a database of orthologous U12-type spliceosomal introns. Nucl Acid Res 35:D110–D115

    Article  CAS  Google Scholar 

  • Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 27:2411–2414

    Google Scholar 

  • Black DL (1995) Finding splice sites within a wilderness of RNA. RNA 1:763–771

    PubMed  CAS  Google Scholar 

  • Blencowe BJ (2006) Alternative splicing: New insights from global analysis. Cell 126:37–47

    Article  PubMed  CAS  Google Scholar 

  • Brow DA (2002) Allosteric cascade of spliceosome activation. Annu Rev Genet 36:333–360

    Article  PubMed  CAS  Google Scholar 

  • Brown JWS (1996) Arabidopsis intron mutations and pre-mRNA splicing. Plant J 10:771–780

    Article  PubMed  CAS  Google Scholar 

  • Brown JWS, Simpson CG (1998) Splice site selection in plant pre-mRNA splicing. Annu Rev Plant Physiol Plant Mol Biol 49:77–95

    Article  PubMed  Google Scholar 

  • Burge CB, Padgett RA, Sharp PA (1998) Evolutionary fates and origins of U12-type introns. Mol Cell 2:773–785

    Article  PubMed  CAS  Google Scholar 

  • Burge CB, Tuschl T, Sharp PA (1999) Splicing of precursors to mRNAs by the spliceosomes. In: RNA World, Gesteland R, Cech TR, Atkins JF eds. (New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor), pp. 525–560

    Google Scholar 

  • Chang W-C, Chen Y-C, Lee K-C, Tarn W-Y (2007) Alternative splicing and bioinformatics analysis of human U12-type introns. Nucl Acid Res. 35:1833–1841

    Article  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-G and Brenner SE. (2004) WebLogo: A sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RC, Incorvaia R, Padgett RA (1997) Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns. Mol Cell 1:151–160

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RC, Peris MJ, Seyboldt AS, Padgett RA (2001a) Role of the 3′ splice site in U12-dependent intron splicing. Mol Cell Biol 21:1942–1952

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RC, Shukla GC, Fuller JD, Padgett RA (2001b) Alternative splicing of U12-dependent introns in vivo responds to purine-rich enhancers. RNA 7:1378–1388

    PubMed  CAS  Google Scholar 

  • Dietrich RC, Fuller JD, Padgett RA (2005) A mutational analysis of U12-dependent splice site dinucleotides. RNA 11:1430–1440

    Article  PubMed  CAS  Google Scholar 

  • Feng D-F, Cho G, Doolittle RF (1997) Determining divergence times with a protein clock: Update and re-evaluation. Proc Natl Acad Sci USA 94:13028–13033

    Article  PubMed  CAS  Google Scholar 

  • Frilander MJ, Steitz JA (1999) Initial recognition of U12-dependent introns requires both U11/5′ splice-site and U12/branchpoint interactions. Genes Dev 13:851–863

    Article  PubMed  CAS  Google Scholar 

  • Frilander MJ, Steitz JA (2001) Dynamic exchanges of RNA interactions leading to catalytic core formation in the U12-dependent spliceosome. Mol Cell 7:217–226

    Article  PubMed  CAS  Google Scholar 

  • Gniadkowski G, Hemmings-Mieszczak M, Klahre U, Liu HX, Filipowicz W (1996) Characterization of intronic uridine-rich elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia. Nucl Acid Res 24:619–627

    Article  CAS  Google Scholar 

  • Golas MM, Sander B, Will CL, Lührmann R, Stark H (2005) Major conformational change in the complex SF3b upon integration into the spliceosomal U11/U12 di-snRNP as revealed by electron cryomicroscopy. Mol Cell 17:869–883

    Article  PubMed  CAS  Google Scholar 

  • Goodall GJ, Filipowicz W (1989) The AU-rich sequences present in the introns of plant nuclear mRNAs are required for splicing. Cell 58:473–483

    Article  PubMed  CAS  Google Scholar 

  • Goodall GJ, Filipowicz W (1991) Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J 10:2635–2644

    PubMed  CAS  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Hall SL, Padgett RA (1994) Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites. J Mol Biol 239:357–365

    Article  PubMed  CAS  Google Scholar 

  • Hall SL, Padgett RA (1996) Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science 271:1716–1718

    Article  PubMed  CAS  Google Scholar 

  • Hastings ML, Krainer AR (2001) Functions of SR proteins in the U12-dependent AT-AC pre-mRNA splicing pathway. RNA 7:471–482

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Shu H-D, Steitz JA (2004) Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay. Proc Natl Acad Sci USA 101:17976–17981

    Article  PubMed  CAS  Google Scholar 

  • Incorvaia R, Padgett RA (1998) Base pairing with U6atac snRNA is required for 5′ splice site activation of U12-dependent introns in vivo. RNA 4:709–718

    Article  PubMed  CAS  Google Scholar 

  • Jackson IJ (1991) A reappraisal of non-consensus mRNA splice sites. Nucl Acid Res 19:3795–3798

    Article  CAS  Google Scholar 

  • Kalyna K, Lopato S, Barta A (2003) Ectopic expression of atRSZ33 reveals its function in splicing and causes pleiotropic changes in development. Mol Biol Cell 14:3565–3577

    Article  PubMed  CAS  Google Scholar 

  • Kalyna K, Barta A (2004) A plethora of plant serine/arginine-rich proteins: Redundancy or evolution of novel gene functions? Biochem Soc Trans 32:561–564

    Article  PubMed  CAS  Google Scholar 

  • Kolossova I, Padgett RA (1997) U11 snRNA interacts in vivo with the 5′ splice site of U12-dependent (AU-AC) pre-mRNA introns. RNA 3:227–233

    PubMed  CAS  Google Scholar 

  • Kmieciak K, Simpson CG, Lewandowska D, Brown JWS, Jarmowlowski A (2002) Cloning and characterization of two sub-units of Arabidopsis thaliana nuclear cap-binding complex. Gene 283:171–183

    PubMed  CAS  Google Scholar 

  • Lambermon MH, Simpson GG, Wieczorek Kirk DA, Hemmings-Mieszczak S, Klahre U, Filipowicz W (2000) UBP1, a novel hnRNP-like protein that functions at multiple steps of higher plant nuclear pre-mRNA maturation. EMBO J 19:1638–1649

    Article  PubMed  CAS  Google Scholar 

  • Lazar G, Schaal T, Maniatis T, Goodman HM (1995) Identification of a plant serine-arginine-rich protein similar to the mammalian splicing factor SF2/ASF. Proc Natl Acad Sci USA 92:7672–7676

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Durbin R (2001) A computational scan for U12-dependent introns in the human genome sequence. Nucl Acid Res 29:4006–4013

    CAS  Google Scholar 

  • Lewandowska D, Simpson CG, Clark GP, Jennings NS, Barciszewska-Pacak L, Lin CF, Makalowski W, Brown JWS, Jarmolowski A (2004) Determinants of plant U12-dependent intron splicing efficiency. Plant Cell 16:1340–1352

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Mayeda A, Krainer AR, Barta A (1996a) Pre-mRNA splicing in plants: characterization of Ser/Arg splicing factors. Proc Natl Acad Sci USA 93:3074–3079

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Waigmann E, Barta A (1996b) Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis. Plant Cell 8:2255–2264

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Gattoni R, Fabini G, Stevenin J, Barta A (1999a) A novel family of plant splicing factors with a Zn knuckle motif: examination of RNA binding and splicing activities. Plant Mol Biol 39:761–773

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Kalyna L, Dorner S, Kobayashi R, Krainer AR, Barta A (1999b) atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Genes Dev 13:987–1001

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Forstner C, Kalyna L, Hilscher J, Langhammer U, Indrapichate K, Lorković ZJ, Barta A (2002) Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors. J Biol Chem 277:39989–39998

    Article  PubMed  CAS  Google Scholar 

  • Lorković ZJ, Wieczorek Kirk DA, Lambermon MH, Filipowicz W (2000a) Pre-mRNA splicing in higher plants. Trends Plant Sci 5:160–167

    Article  PubMed  Google Scholar 

  • Lorković ZJ, Wieczorek Kirk DA, Klahre U, Hemmings-Mieszczak M, Filipowicz W (2000b) RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)+ RNA in nuclei of plant cells. RNA 6:1610–1624

    Article  PubMed  Google Scholar 

  • Lorković ZJ, Lehner R, Forstner C, Barta A (2005) Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA 11:1095–1107

    Article  PubMed  CAS  Google Scholar 

  • Luo HR, Moreau GA, Levin N, Moore MJ (1999) The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes. RNA 5:893–908

    Article  PubMed  CAS  Google Scholar 

  • Lynch L, Richardson AO (2002) The evolution of spliceosomal introns. Curr Opin Genet Dev 12:701–710

    Article  PubMed  CAS  Google Scholar 

  • Madhani HD, Guthrie C (1994) Dynamic RNA-RNA interactions in the spliceosome. Annu Rev Genet 28:1–26

    Article  PubMed  CAS  Google Scholar 

  • Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99

    Article  PubMed  CAS  Google Scholar 

  • Marker C, Zemann, A, Terhorst T, Kiefmann M, Kastenmayer JP, Green P, Bachellerie JP, Brosius J, Huttenhofer A (2002) Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol 12:2002–2013

    Article  PubMed  CAS  Google Scholar 

  • Massenet S, Branlant C (1999) A limited number of pseudouridine residues in the human atac spliceosomal UsnRNAs as compared to human major spliceosomal UsnRNAs. RNA. 5:1495–1503

    Article  PubMed  CAS  Google Scholar 

  • McConnell TS, Cho SJ, Frilander MJ, Steitz JA (2002) Branchpoint selection in the splicing of U12-dependent introns in vitro. RNA 8:579–586

    Article  PubMed  CAS  Google Scholar 

  • Montzka KA, Steitz JA (1988) Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc. Proc Natl Acad Sci USA 85:8885–8889

    Article  PubMed  CAS  Google Scholar 

  • Nottrott S, Hartmuth K, Fabrizio P, Urlaub H, Vidovic I, Ficner R, Lührmann R (1999) Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5′ stem-loop of U4 snRNA. EMBO J 18:6119–6133

    Article  PubMed  CAS  Google Scholar 

  • Otake LR, Scamborova P, Hashimoto C, Steitz JA (2002) The divergent U12-type spliceosome is required for pre-mRNA splicing and is essential for development in Drosophila. Mol Cell 9:439–446

    Article  PubMed  CAS  Google Scholar 

  • Patel AA, McCarthy P, Steitz JA (2002) The splicing of U12-type introns can be a rate-limiting step in gene expression. EMBO J 21:3804–3815

    Article  PubMed  CAS  Google Scholar 

  • Patel AA, Steitz JA (2003) Splicing double: Insights from the second spliceosome. Nat Rev Mol Cell Biol 4:960–970

    Article  PubMed  CAS  Google Scholar 

  • Pessa HK, Ruokolainen A, Frilander MJ (2006) The abundance of the spliceosomal snRNPs is not limiting the splicing of U12-type introns. RNA 12:1883–1892

    Article  PubMed  CAS  Google Scholar 

  • Rappsilber J, Ryder U, Lamond AI, Mann M.(2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2001) Nuclear pre-mRNA splicing in plants. Crit Rev Plant Sci 20:523–571

    Article  CAS  Google Scholar 

  • Russell AG, Charette JM, Spencer DF, Gray MW (2006) An early evolutionary origin for the minor spliceosome. Nature 443:863–866

    Article  PubMed  CAS  Google Scholar 

  • Scamborova P, Wong A, Steitz JA (2004) An intronic enhancer regulates splicing of the twintron of Drosophila melanogaster prospero pre-mRNA by two different spliceosomes. Mol Cell Biol 24:1855–1869

    Article  PubMed  CAS  Google Scholar 

  • Schellenberg MJ, Edwards RA, Ritchie DB, Kent OA, Golas MM, Stark H, Lührmann R, Glover JNM, MacMillan AM (2006) Crystal structure of a core spliceosomal protein interface. Proc Natl Acad Sci USA 103:1266–1271

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Will CL, Makarova OV, Makarov EM, Lührmann R (2002) Human U4/U6.U5 and U4atac/U6atac.U5 tri-snRNPs exhibit similar protein compositions. Mol Cell Biol 22:3219–3229

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Will CL, Brosius J, Frilander MJ, Lührmann R (2004) Identification of an evolutionarily divergent U11 small nuclear ribonucleoprotein particle in Drosophila. Proc Natl Acad Sci USA 101:9584–9589

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA, Burge CB (1997) Classification of introns: U2-type or U12-type. Cell 91:875–879

    Article  PubMed  CAS  Google Scholar 

  • Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R (2006) Comprehensive splice-site analysis using comparative genomics. Nucl Acid Res 34:3955–3967

    Article  CAS  Google Scholar 

  • Shukla GC, Padgett RA (1999) Conservation of functional features of U6atac and U12 snRNAs between vertebrates and higher plants. RNA 5:525–538

    Article  PubMed  CAS  Google Scholar 

  • Shukla GC, Padgett RA (2001) The intramolecular stem-loop structure of U6 snRNA can functionally replace the U6atac snRNA stem-loop. RNA 7:94–105

    Article  PubMed  CAS  Google Scholar 

  • Shukla GC, Cole AJ, Dietrich RC, Padgett RA (2002) Domains of human U4atac snRNA required for U12-dependent splicing in vivo. Nucl Acid Res 30:4650–4657

    Article  CAS  Google Scholar 

  • Simpson CG, Clark GP, Lyon J, Watters J, McQuade C, Brown JWS (1999) Interactions between introns via exon definition in plant pre-mRNA splicing. Plant J 18:293–302

    Article  CAS  Google Scholar 

  • Simpson CG, Hedley PE, Watters JA, Clark GP, McQuade C, Machray GC, Brown JWS (2000) Requirements for mini-exon inclusion in potato invertase mRNAs provides evidence for exon-scanning interactions in plants. RNA 6:422–433

    Article  PubMed  CAS  Google Scholar 

  • Simpson CG, Thow G, Clark GP, Jennings SN, Watters JA, Brown JWS (2002) Mutational analysis of a plant branchpoint and polypyrimidine tract required for constitutive splicing of a mini-exon. RNA 8:47–56

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Filipowicz W (1996) Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol Biol 32:1–41

    Article  PubMed  CAS  Google Scholar 

  • Tarn WY, Steitz JA (1996a) A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell 84:801–811

    Article  PubMed  CAS  Google Scholar 

  • Tarn WY, Steitz JA (1996b) Highly diverged U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns. Science 273:1824–1832

    Article  PubMed  CAS  Google Scholar 

  • Tarn WY, Steitz JA (1997) Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. Trends Biochem Sci 22:132–137

    Article  PubMed  CAS  Google Scholar 

  • Wassarman KM, Steitz JA (1992) The low-abundance U11 and U12 small nuclear ribonucleoproteins (snRNPs) interact to form a two-snRNP complex. Mol Cell Biol 12:1276–1285

    PubMed  CAS  Google Scholar 

  • Will CL, Schneider C, Reed R, Lührmann R (1999) Identification of both shared and distinct proteins in the major and minor spliceosomes. Science 284:2003–2005

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Lührmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290–301

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Schneider C, MacMillan AM, Katopodis NF, Neubauer G, Wilm W, Lührmann R, Query CC (2001) A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. EMBO J 20:4536–4546

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Schneider C, Hossbach W, Urlaub H, Rauhut R, Elbashir S, Tuschl T, Lührmann R (2004) The Human 18S U11/U12 snRNP contains a set of novel proteins not found in the U2-dependent spliceosome. RNA 10:929–941

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Krainer AR (1996) U1-mediated exon definition interactions between AT-AC and GT-AG introns. Science 274:1005–1008

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Krainer AR (1997) Splicing of a divergent subclass of AT-AC introns requires the major spliceosomal snRNAs. RNA 3:586–601

    PubMed  CAS  Google Scholar 

  • Wu Q, Krainer AR (1998) Purine-rich enhancers function in the AT-AC pre-mRNA splicing pathway and do so independently of intact U1 snRNP. RNA 4:1664–1673

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Krainer AR (1999) AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol Cell Biol 19:3225–3236

    PubMed  CAS  Google Scholar 

  • Yu YT, Tarn WY, Yario TA, Steitz JA (1996) More Sm snRNAs from vertebrate cells. Exp Cell Res 229:276–281

    Article  PubMed  CAS  Google Scholar 

  • Yu YT, Steitz JA (1997) Site-specific crosslinking of mammalian U11 and u6atac to the 5’ splice site of an AT-AC intron. Proc Natl Acad Sci USA 94:6030–6035

    Article  PubMed  CAS  Google Scholar 

  • Yu YT, Scharl EC, Smith CM, Steitz JA (1999) The growing world of small nuclear ribonucleoproteins. In RNA World, R.Gesteland, T.R.Cech, and J.F.Atkins, eds. (New York: Cold Spring Harbor Laboratory Press), pp 487–524

    Google Scholar 

  • Zhou Z, Licklider LJ, Gygi SP, Reed R (2002) Comprehensive proteomic analysis of the human spliceosome. Nature 419:182–185

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Brendel V (2003) Identification, characterization and molecular phylogeny of U12-dependent introns in the Arabidopsis thaliana genome. Nucl Acid Res 31:4561–4572

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simpson, C.G., Brown, J.W.S. (2008). U12-Dependent Intron Splicing in Plants. In: Reddy, A.S.N., Golovkin, M. (eds) Nuclear pre-mRNA Processing in Plants. Current Topics in Microbiology and Immunology, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76776-3_4

Download citation

Publish with us

Policies and ethics