Skip to main content

State of Decay: An Update on Plant mRNA Turnover

  • Chapter
Nuclear pre-mRNA Processing in Plants

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 326))

Proper degradation of plant messenger RNA is crucial for the maintenance of cellular and organismal homeostasis, and it must be properly regulated to enable rapid adjustments in response to endogenous and external cues. Only a few dedicated studies have been done so far to address the fundamental mechanisms of mRNA decay in plants, especially as compared with fungal and mammalian model systems. Consequently, our systems-level understanding of plant mRNA decay remains fairly rudimentary. Nevertheless, a number of serendipitous findings in recent years have reasserted the central position of the regulated mRNA decay in plant physiology. In addition, the meteoric rise to prominence of the plant small RNA field has spawned a renewed interest in the general plant mRNA turnover pathways. Combined with the advent of widely accessible microarray platforms, these advances allow for a renewed hope of rapid progress in our understanding of the fundamental rules governing regulated mRNA degradation in plants. This chapter summarizes recent findings in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999a) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18:5399–5410

    PubMed  CAS  Google Scholar 

  • Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P (1999b) The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev 13:2148–2158

    PubMed  CAS  Google Scholar 

  • Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A (2004) A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432:112–118

    PubMed  CAS  Google Scholar 

  • Anderson MB, Folta K, Warpeha K M, Gibbons J, Gao J, Kaufman LS (1999) Blue light-directed destabilization of the pea Lhcb1*4 transcript depends on sequences within the 5′ untranslated region. Plant Cell 11:1579–1590

    PubMed  CAS  Google Scholar 

  • Arciga-Reyes L, Wootton L, Kieffer M, Davies B (2006) UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J 47:480–489

    PubMed  CAS  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577

    PubMed  CAS  Google Scholar 

  • Behm-Ansmant I, Gatfield D, Rehwinkel J, Hilgers V, Izaurralde E (2007) A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J 26:1591–1601

    PubMed  CAS  Google Scholar 

  • Belostotsky DA (2004) mRNA turnover meets RNA interference. Mol Cell 16:498–500

    PubMed  CAS  Google Scholar 

  • Belostotsky DA, Rose AB (2005) Plant gene expression in the age of systems biology: integrating transcriptional and post-transcriptional events. Trends Plant Sci 10:347–353

    PubMed  CAS  Google Scholar 

  • Bhat S, TangL, Krueger AD, Smith CL, Ford SR, Dickey LF, Petracek ME (2004) The Fed-1 (CAUU) 4 element is a 5′ UTR dark-responsive mRNA instability element that functions independently of dark-induced polyribosome dissociation. Plant Mol Biol 56:761–773

    PubMed  CAS  Google Scholar 

  • Bollenbach TJ, Schuster G, Stern DB (2004) Cooperation of endo- and exoribonucleases in chloroplast mRNA turnover. Prog Nucleic Acid Res Mol Biol 78:305–337

    PubMed  CAS  Google Scholar 

  • Cao D, Parker R (2003) Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 113:533–545

    PubMed  CAS  Google Scholar 

  • Cao D, Parker R (2001) Computational modeling of eukaryotic mRNA turnover. RNA 7:1192–1212

    PubMed  CAS  Google Scholar 

  • Chan MT, Yu SM (1998) The 3′ untranslated region of a rice alpha-amylase gene functions as a sugar-dependent mRNA stability determinant. Proc Natl Acad Sci USA 95:6543–6547

    PubMed  CAS  Google Scholar 

  • Chen C-Y A, Xu N, Shyu A-B (1995) mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol Cell Biol 15:5777–5788

    PubMed  Google Scholar 

  • Cheng Y, Chen X (2004) Posttranscriptional control of plant development. Curr Opin Plant Biol 7:20–25

    PubMed  CAS  Google Scholar 

  • Chekanova JA, Shaw RJ, Wills MA, Belostotsky DA (2000) Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J Biol Chem 275:33158–33166

    PubMed  CAS  Google Scholar 

  • Chekanova JA, Gregory BD, Reverdatto SV, Chen H, Kumar R, Hooker T, Yazaki J, LI P, Skiba NP, Peng Q, Alonso JM, Brukhin V, Grossniklaus U, Ecker JR, Belostotsky DA (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131: 1340–1353

    PubMed  CAS  Google Scholar 

  • Chiba Y, Ishikawa M, Kijima F, Tyson RH, Kim J, Yamamoto A, Nambara E, Leustek T, Wallsgrove RM, Naito S (1999) Evidence for autoregulation of cystathionine gamma-synthase mRNA stability in arabidopsis. Science:1371–1374

    Google Scholar 

  • Chiba Y, Sakurai R, Yoshino M, Ominato K, Ishikawa M, Onouchi H, Naito S (2003) S-adenosyl-l-methionine is an effector in the posttranscriptional autoregulation of the cystathionine gamma-synthase gene in Arabidopsis. Proc Natl Acad Sci USA 100:10225–10230

    PubMed  CAS  Google Scholar 

  • Chubb JR, Trcek T, Shenoy SM, Singer RH (2006) Transcriptional pulsing of a developmental gene. Curr Biol 16:1018–1025

    PubMed  CAS  Google Scholar 

  • Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 7:861–890

    Google Scholar 

  • Coller J, Parker R (2005) General translational repression by activators of mRNA decapping. Cell 122:875–886

    PubMed  CAS  Google Scholar 

  • Deyholos MK, Cavaness GF, Hall B, King E, Punwani J, Van Norman J, Sieburth LE (2003) VARICOSE, a WD-domain protein, is required for leaf blade development. Development 130:6577–6588

    PubMed  CAS  Google Scholar 

  • Di R, Tumer NE (2005) Expression of a truncated form of ribosomal protein L3 confers resistance to pokeweed antiviral protein and the Fusarium mycotoxin deoxynivalenol. Mol Plant Microbe Interact 18:762–770

    PubMed  CAS  Google Scholar 

  • Dickey LF, Nguyen T, Allen GC, Thompson WF (1994) Light modulation of ferredoxin mRNA abundance requires an open reading frame. Plant Cell 6:1171–1176

    PubMed  CAS  Google Scholar 

  • Domeier ME, Morse DP, Knight SW, Portereiko M, Bass BL, Mango SE (2000) A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science 289:1928–1931

    PubMed  CAS  Google Scholar 

  • Downes BP, Crowell DN (1998) Cytokinin regulates the expression of a soybean beta-expansin gene by a post-transcriptional mechanism. Plant Mol Biol 37:437–444

    PubMed  CAS  Google Scholar 

  • Dziembowski A, Lorentzen E, Conti E, Seraphin B (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14:15–22

    PubMed  CAS  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 8:9–22

    PubMed  CAS  Google Scholar 

  • Fedoroff NV (2002) RNA-binding proteins in plants: the tip of an iceberg? Curr Opin Plant Biol 5:452–459

    PubMed  CAS  Google Scholar 

  • Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J (2005) Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20:905–915

    PubMed  CAS  Google Scholar 

  • Folta KM, Kaufman LS (2003) Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Mol Biol 51:609–618

    PubMed  CAS  Google Scholar 

  • Frischmeyer PA, van Hoof A, O’Donnell K, Guerrerio AL, Parker R, Dietz HC (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261

    PubMed  CAS  Google Scholar 

  • Gazzani S, Lawrenson T, Woodward C, Headon D, Sablowski R (2004) A link between mRNA turnover and RNA interference in Arabidopsis. Science 306:1046–1048

    PubMed  CAS  Google Scholar 

  • Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE (2003) Y14 and hUpf3b form an NMD-activating complex. Mol Cell 11:939–949

    PubMed  CAS  Google Scholar 

  • Goeres DC, Van Norman JMV, Zhang W, Fauver NA, Spencer ML, Sieburth LE (2007) Components of the Arabidopsis mRNA Decapping Complex Are Required for Early Seedling Development. The Plant Cell 19:1549–1564

    PubMed  CAS  Google Scholar 

  • Gil P, Green PJ (1996) Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance: the 3′ untranslated region functions as an mRNA instability determinant. EMBO J 15:1678–1686

    PubMed  CAS  Google Scholar 

  • Gu M, Fabrega C, Liu SW, Liu H, Kiledjian M, Lima CD (2004) Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Mol Cell 14:67–80

    PubMed  CAS  Google Scholar 

  • Gutierrez RA, Ewing RM, Cherry JM, Green PJ (2002) Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: rapid decay is associated with a group of touch- and specific clock-controlled genes. Proc Natl Acad Sci USA 99:11513–11518

    PubMed  CAS  Google Scholar 

  • Gutierrez R A, MacIntosh GC, Green PJ (1999) Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends Plant Sci 4:429–438

    PubMed  Google Scholar 

  • He F, Li X, Spatrick P, Casillo R, Dong S, Jacobson A (2003) Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol Cell 12:1439–1552

    PubMed  CAS  Google Scholar 

  • Higgs DC, Colbert JT (1994) Oat phytochromeA mRNA degradation appears to occur via two distinct pathways. Plant Cell 6:1007–1019

    PubMed  CAS  Google Scholar 

  • Hori K, Watanabe Y (2005) UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J 43:530–540

    PubMed  CAS  Google Scholar 

  • Houseley J, Lacava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7:529–539

    PubMed  CAS  Google Scholar 

  • Hudak KA, Bauman JD, Tumer NE (2002) Pokeweed antiviral protein binds to the cap structure of eukaryotic mRNA and depurinates the mRNA downstream of the cap. RNA 8:1148–1159

    PubMed  CAS  Google Scholar 

  • Ibrahim F, Rohr J, Jeong W J, Hesson J, Cerutti H (2006) Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science 314:1893

    PubMed  CAS  Google Scholar 

  • Isshiki M, Yamamoto Y, Satoh H, Shimamoto K (2001) Nonsense-mediated decay of mutant waxy mRNA in rice. Plant Physiol 125:1388–1398

    PubMed  CAS  Google Scholar 

  • Jacobson A (1996) Poly(A) metabolism and translation: the closed loop model. In Translational control, J. W. B. Hershey, Mathews, M.B., Sonenberg, N., ed. (CSHL Press), pp. 451–480

    Google Scholar 

  • Johnson MA, Perez-Amador MA, Lidder P, Green PJ (2000) Mutants of Arabidopsis defective in a sequence-specific mRNA degradation pathway. Proc Natl Acad Sci USA 97:13991–13996

    PubMed  CAS  Google Scholar 

  • Kahvejian A, Roy G, Sonenberg N (2001) The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb Symp Quant Biol 66:293–300

    PubMed  CAS  Google Scholar 

  • Kastenmayer JP, Green PJ (2000) Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm. Proc Natl Acad Sci USA 97:13985–13990

    PubMed  CAS  Google Scholar 

  • Kedersha N., Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884

    PubMed  CAS  Google Scholar 

  • Kertesz S, Kerenyi Z, Merai Z, Bartos I, Palfy T, Barta E, Silhavy D (2006) Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res 34:6147–6157

    PubMed  CAS  Google Scholar 

  • Kim JH, Richter JD (2006) Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 24:173–183

    PubMed  CAS  Google Scholar 

  • Lai WS, Kennington EA, Blackshear PJ (2003) Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Mol Cell Biol 23:3798–3812

    PubMed  CAS  Google Scholar 

  • Lidder P, Gutierrez RA, Salome PA, McClung CR, Green PJ (2005) Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway. Plant Physiol 138:2374–2385

    PubMed  CAS  Google Scholar 

  • Liu, H, Rodgers ND, Jiao X, Kiledjian M (2002) The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J 21:4699–4708

    PubMed  CAS  Google Scholar 

  • Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237

    PubMed  CAS  Google Scholar 

  • Lue M-Y, Lee H-t (1994) Poly(A) tail shortening of alpha-amylase mRNAs in vegetative tissues of Oryza sativa. Biochem Biophys Res Commun 202:1031–1037

    Google Scholar 

  • Lykke-Andersen J, Wagner E (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19:351–361

    PubMed  CAS  Google Scholar 

  • McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ (1989) Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1:229–239

    PubMed  CAS  Google Scholar 

  • Meyer S, Temme C, Wahle E (2004) Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39:197–216

    PubMed  CAS  Google Scholar 

  • Muhlrad D, Parker R (1994) Premature translational termination triggers mRNA decapping. Nature 370:578–581

    PubMed  CAS  Google Scholar 

  • Narsai R, Howell KA, Millar AH, Nicholas O’Toole N, Ian Small I, Whelan J (2007) Genome-Wide Analysis of mRNA Decay Rates and Their Determinants in Arabidopsis thaliana. Plant Cell 19:3418–3436

    PubMed  CAS  Google Scholar 

  • Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T (2005) Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J 44:972–984

    PubMed  CAS  Google Scholar 

  • Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5′→3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci USA 103:13286–13293

    PubMed  CAS  Google Scholar 

  • Onouchi H, Nagami Y, Haraguchi Y, Nakamoto M, Nishimura Y, Sakurai R, Nagao N, Kawasaki D, Kadokura Y, Naito S (2005) Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev 19:1799–1810

    PubMed  CAS  Google Scholar 

  • Orban TI, Izaurralde E (2005) Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11:459–469

    PubMed  CAS  Google Scholar 

  • Parikh BA, Coetzer C, Tumer NE (2002) Pokeweed antiviral protein regulates the stability of its own mRNA by a mechanism that requires depurination but can be separated from depurination of the alpha-sarcin/ricin loop of rRNA. J Biol Chem 277:41428–41437

    PubMed  CAS  Google Scholar 

  • Petracek ME, Dickey LF, Huber SC, Thompson WF (1997) Light-regulated changes in abundance and polyribosome association of ferredoxin mRNA are dependent on photosynthesis. Plant Cell 9:2291–2300

    PubMed  CAS  Google Scholar 

  • Petracek ME, Nuygen T, Thompson WF, Dickey LF (2000) Premature termination codons destabilize ferredoxin-1 mRNA when ferredoxin-1 is translated. Plant J 21:563–569

    PubMed  CAS  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    PubMed  CAS  Google Scholar 

  • Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, Genschik P (2006) The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18:3047–3057

    PubMed  CAS  Google Scholar 

  • Rehwinkel J, Raes J, Izaurralde E (2006) Nonsense-mediated mRNA decay: Target genes and functional diversification of effectors. Trends Biochem Sci 31, 639–646

    PubMed  CAS  Google Scholar 

  • Reverdatto SV, Dutko JA, Chekanova JA, Hamilton DA, Belostotsky DA (2004) mRNA deadenylation by PARN is essential for embryogenesis in higher plants. RNA 10:1200–1214

    PubMed  CAS  Google Scholar 

  • Rose AB (2004) The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant J 40:744–751

    PubMed  CAS  Google Scholar 

  • Ross J. (1995) mRNA stability in mammalian cells. Microbiol Rev 59, 423–450

    PubMed  CAS  Google Scholar 

  • Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–808

    PubMed  CAS  Google Scholar 

  • Sheu JJ, Yu TS, Tong WF, Yu SM (1996) Carbohydrate starvation stimulates differential expression of rice alpha-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. J Biol Chem 271:26998–27004

    PubMed  CAS  Google Scholar 

  • Sonenberg N (1988) Cap-binding proteins of eukaryotic messenger RNA: functions in initiation and control of translation. Prog Nucl Acid Res Mol Biol 35:173–207

    CAS  Google Scholar 

  • Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15:173–183

    PubMed  CAS  Google Scholar 

  • Sullivan ML, Green P J (1996) Mutational analysis of the DST element in tobacco cells and transgenic plants: identification of residues critical for mRNA instability. RNA 2:308–315

    PubMed  CAS  Google Scholar 

  • Tanzer MM, Meagher RB (1995) Degradation of the soybean ribulose-1, 5-bisphosphate carboxylase small-subunit mRNA, SRS4, initiates with endonucleolytic cleavage. Mol Cell Biol 15:6641–6652

    PubMed  CAS  Google Scholar 

  • Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:371–382

    PubMed  CAS  Google Scholar 

  • Torchet C, Bousquet-Antonelli C, Milligan L, Thompson E, Kufel J, Tollervey D (2002) Processing of 3′-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell 9:1285–1296

    PubMed  CAS  Google Scholar 

  • Tran H, Schilling M, Wirbelauer C, Hess D, Nagamine Y (2004) Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol Cell 13:101–111

    PubMed  CAS  Google Scholar 

  • Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104:377–386

    PubMed  CAS  Google Scholar 

  • Tumer NE, Hwang DJ, Bonness M (1997) C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proc Natl Acad Sci USA 94:3866–3871

    PubMed  CAS  Google Scholar 

  • van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B (2002) Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915–6924

    PubMed  Google Scholar 

  • van Hoof A, Frischmeyer PA, Dietz HC, Parker R (2002). Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295:2262–2264

    PubMed  Google Scholar 

  • van Hoof A, Green PJ (1996) Premature nonsense codons decrease the stability of phytohemagglutinin mRNA in a position-dependent manner. Plant J 10:415–424

    PubMed  Google Scholar 

  • Vasiljeva L, Buratowski S (2006) Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 21:239–248

    PubMed  CAS  Google Scholar 

  • Vasudevan S, Peltz SW (2001) Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell 7:1191–1200

    PubMed  CAS  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    PubMed  CAS  Google Scholar 

  • Vazquez F (2006) Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 11:460–468

    PubMed  CAS  Google Scholar 

  • Voelker TA, Moreno J, Chrispeels MJ (1990) Expression analysis of a pseudogene in transgenic tobacco: A frameshift mutation prevents mRNA accumulation. Plant Cell 2:255–261

    PubMed  CAS  Google Scholar 

  • Wang H, Wu H-m, Cheung AY (1996) Pollination induces mRNA poly(A) tail shortening and cell deterioration in flower transmitting tissue. Plant J 9:715–727

    PubMed  CAS  Google Scholar 

  • Wang, Z, Jiao X, Carr-Schmid A, Kiledjian M (2002) The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci USA 99:12663–12668

    PubMed  CAS  Google Scholar 

  • Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2:135–140

    PubMed  CAS  Google Scholar 

  • Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246

    PubMed  CAS  Google Scholar 

  • Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Muller M, Gaestel M, Resch K, Holtmann H (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 18:4969–4980

    PubMed  CAS  Google Scholar 

  • Xu J, Yang JY, Niu QW, Chua NH (2006) Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18:3386–3398

    PubMed  CAS  Google Scholar 

  • Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB (2005) Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12:1054–1063

    PubMed  CAS  Google Scholar 

  • Yoine M, Nishii T, Nakamura K (2006a) Arabidopsis UPF1 RNA helicase for nonsense-mediated mRNA decay is involved in seed size control and is essential for growth. Plant Cell Physiol 47:572–580

    PubMed  CAS  Google Scholar 

  • Yoine M., Ohto MA, Onai K, Mita S, Nakamura K (2006b) The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. Plant J 47:49–62

    PubMed  CAS  Google Scholar 

  • Zhang S, Mehdy MC (1994) Binding of a 50-kD protein to a U-rich sequence in an mRNA encoding a proline-rich protein that is destabilized by fungal elicitor. Plant Cell 6:135–145

    PubMed  CAS  Google Scholar 

  • Zhang S, Sheng J, Liu Y, Mehdy MC (1993) Fungal elicitor-induced bean proline-rich protein mRNA down-regulation is due to destabilization that is transcription and translation dependent. Plant Cell 5:1089–1099

    PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belostotsky, D.A. (2008). State of Decay: An Update on Plant mRNA Turnover. In: Reddy, A.S.N., Golovkin, M. (eds) Nuclear pre-mRNA Processing in Plants. Current Topics in Microbiology and Immunology, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76776-3_10

Download citation

Publish with us

Policies and ethics