Advertisement

Context Awareness by Case-Based Reasoning in a Music Recommendation System

  • Jae Sik Lee
  • Jin Chun Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4836)

Abstract

The recommendation system is one of the core technologies for implementing personalization services. Recommendation systems in ubiquitous computing environment should have the capability of context-awareness. In this research, we developed a music recommendation system, which we shall call C2_Music, which utilizes not only the user’s demographics and behavioral patterns but also the user’s context. For a specific user in a specific context, the C2_Music recommends the music that the similar users listened most in the similar context. In evaluating the performance of C2_Music using a real world data, it outperforms the comparative system that utilizes the user’s demogra-phics and behavioral patterns only.

Keywords

Music Recommendation System Context-Awareness Case-based Reasoning Ubiquitous Data Mining Personalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aamodt, A., Plaza, E.: Case-based Reasoning: Fundamental Issues, Methodological Variations, and System Approaches. Artificial Intelligence Communication 7, 39–59 (1994)Google Scholar
  2. 2.
    Benerecetti, M., Bouquet, P., Bonifacio, M.: Distributed Context-Aware System. Human-Computer Interaction 16, 213–228 (2000)CrossRefGoogle Scholar
  3. 3.
    Celma, O., Ramírez, M., Herrera, P.: Foafing the Music: A Music Recommendation System based on RSS Feeds and User Preferences. In: Proceedings: 6th International Conference on Music Information Retrieval, London, UK (2005)Google Scholar
  4. 4.
    Chen, H.C., Chen, A.P.: A Music Recommendation System Based on Music and User Grouping. Journal of Intelligent Information Systems 24, 113–132 (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cuddy, S., Katchabaw, M., Lutfiyya, H.: Context-Aware Service Selection based on Dynamic and Static Service Attributes. In: Wireless and Mobile Computing, Networking and Communications, IEEE International Conference (2005)Google Scholar
  6. 6.
    Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing 5, 4–7 (2001)CrossRefGoogle Scholar
  7. 7.
    Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-Awareness. In: Proceedings of CHI 2000 Workshop on the What, Who, Where, When, Why, and How of Context-Awareness, The Hague, Netherlands, pp. 1–6 (2000)Google Scholar
  8. 8.
    Dey, A.K., Futakawa, M., Salber, D., Abowd, G.D.: The Conference Assistant: Combining Context-Awareness with Wearable Computing. In: Proceedings Symposium on Wearable Computers, pp. 21–28 (1999)Google Scholar
  9. 9.
    Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction 16, 97–166 (2001)CrossRefGoogle Scholar
  10. 10.
    Herlocker, J., Konstan, J., Tervin, L.G., Riedl, J.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22, 5–53 (2004)CrossRefGoogle Scholar
  11. 11.
    Hong, J.: The Context Fabric. Berkeley, USA (2003), http://guir.berkeley.edu/projects/confab/
  12. 12.
    Jang, S., Woo, W.: Ubi-UCAM: A Unified Context-Aware Application Model. In: Proceedings of Context 2003, Stanford, CA, USA (2003)Google Scholar
  13. 13.
    Kim, J.H., Song, C.H., Lim, K.W., Lee, J.H.: Design of Music Recommendation System Using Context Information. In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS (LNAI), vol. 4088, pp. 708–713. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kofod-Petersen, A., Aamodt, A.: Case-based Situation Assessment in a Mobile Context-Aware Systems. In: AIMS2003. Workshop on Artificial Intelligence for Mobile Systems, Seattle (October 2003)Google Scholar
  15. 15.
    Kolodner, J.L.: Case-based Reasoning. Morgan Kaufman, San Mateo, CA (1993)Google Scholar
  16. 16.
    Kumar, M., Shirazi, B.A., Das, S.K., Sung, B.Y., Levine, D., Singhal, M.: PICO: a Middleware Framework for Pervasive Computing. IEEE Pervasive Computing 2, 72–79 (2003)CrossRefGoogle Scholar
  17. 17.
    Kumar, P., Gopalan, S., Sridhar, V.: Context Enabled Multi-CBR based Recommendation Engine for E-Commerce. In: ICEBE 2005. Proceedings of IEEE International Conference on e-Business Engineering, pp. 237–244. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  18. 18.
    Kuo, F.F., Shan, M.K.: A Personalized Music Filtering System Based on Melody Style Classification. In: Proceedings of IEEE international Conference on Data Mining, pp. 649–652. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  19. 19.
    Leake, D., Maguitman, A., Reichherzer, T.: Cases, Context, and Comfort: Opportunities for Case-Based Reasoning in Smart Homes. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes. LNCS (LNAI), vol. 4008, pp. 109–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Park, H.S., Yoo, J.O., Cho, S.B.: A Context-Aware Music Recommendation System Using Fuzzy Bayesian Networks with Utility Theory. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 970–979. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Resnick, P., Varian, H.R.: Recommender Systems. Communications of the ACM 40, 56–58 (1997)CrossRefGoogle Scholar
  22. 22.
    Ryan, N.: Mobile Computing in a Fieldwork Environment: Metadata Elements. Project Working Document, Version 0.2 (1997)Google Scholar
  23. 23.
    Salber, D., Dey, A.K., Orr, R.J., Abowd, G.D.: Designing For Ubiquitous Computing: A Case Study in Context Sensing. GVU Technical Report GIT-GVU, 99–129 (1999)Google Scholar
  24. 24.
    Schilit, B., Theimer, M.: Disseminating Active Map Information to Mobile Hosts. IEEE Network 8, 22–32 (1994)CrossRefGoogle Scholar
  25. 25.
    Schmidt, A., Beigl, M., Gellersen, H.W.: There is More to Context Than Location. Computers and Graphics 23, 893–901 (1999)CrossRefGoogle Scholar
  26. 26.
    Sharadanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating ‘Word of Mouth’. In: Proceedings of CHI 1995 Conference on Human Factors in Computing Systems, pp. 210–217 (1995)Google Scholar
  27. 27.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System. ACM Transactions on Information Systems 10, 91–102 (1992)CrossRefGoogle Scholar
  28. 28.
    Wang, H.C., Wang, H.S.: A Hybrid Expert System for Equipment Failure Analysis. Expert Systems with Applications 28, 615–622 (2005)CrossRefGoogle Scholar
  29. 29.
    Ward, A., Jones, A., Hopper, A.: A New Location Technique for the Active Office. IEEE Personal Communications 4, 42–47 (1997)CrossRefGoogle Scholar
  30. 30.
    Watson, I.: Applying Case-based Reasoning: Techniques for Enterprise System. Morgan Kaufmann, San Francisco, CA (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jae Sik Lee
    • 1
  • Jin Chun Lee
    • 2
  1. 1.Division of e-Business, School of Business Administration, Ajou University, San 5, Wonchun-Dong, Youngtong-Gu, Suwon 443-749Korea
  2. 2.Ubiquitous Convergence Research Institute, San 5, Wonchun-Dong, Youngtong-Gu, Suwon 443-749Korea

Personalised recommendations