Advertisement

Handling Spatio-temporal Sensor Data in Global Geographical Context with SENSORD

  • Takeshi Ikeda
  • Yutaka Inoue
  • Akio Sashima
  • Koichi Kurumatani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4836)

Abstract

It is important to manage sensors’ locations and their attributes in a coordinated manner to realize context-aware services based on sensing data. A coordinated means of management is also necessary for middleware providing various information services. We have been developing Sensor-Event-Driven Service Coordination Middleware (SENSORD) to realize uniform management of various sensors, their locations and their attributes and higher-level service. It provides sensor locations for users using a unified view with region-specific geographical information, so SENSORD provides data access interfaces like GIS. Sensor locations are a component of that spatial information. Therefore, it is effective to aggregate them into geographical information. In this paper, we first describe SENSORD. Second, we explain methods of managing spatial information and the computational flow of acquiring sensor location information. Moreover, we show an application of SENSORD: an indoor emergency response system in our laboratories.

Keywords

sensor sensor event middleware context-awareness spatio-temporal element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide: a mobile context-aware tour guide. Wireless Network 3(5), 421–433 (1997)CrossRefGoogle Scholar
  2. 2.
    Addlesee, M., Curwen, R., Hodges, S., Newman, J., Steggles, P., Ward, A., Hopper, A.: Implementing a sentient computing system. IEEE Computer Magazine (8), 50–56 (2001)Google Scholar
  3. 3.
    Krumm, J., Horvitz, E.: Predestinations: Inferring destinations from partial trajectories. In: Eighth International Conference on Ubiquitous Computing, pp. 243–260. ACM Press, New York (2006)Google Scholar
  4. 4.
    Sashima, A., Inoue, Y., Kurumatani, K.: Spatio-Temporal Sensor Data Management for Context-Aware Services. In: ADPUC 2006. Proc. of the International Workshop on Advanced Data Processing in Ubiquitous Computing (2006)Google Scholar
  5. 5.
  6. 6.
  7. 7.
    Inoue, Y., Sashima, A., Kurumatani, K.: Indoor navigation system for emergency evacuation in ubiquitous environment. In: Eighth International Conference on Ubiquitous Computing, CD-ROM, ACM Press, New York (2006)Google Scholar
  8. 8.
    Yoda, I., Hosotani, D., Sakaue, K.: Ubiquitous strep vision for controlling safety on platforms in railroad stations. In: ACCV 2004. Proc. of the Sixth Asian Conference on Computer Vision, vol. 2, pp. 770–775 (2004)Google Scholar
  9. 9.
    Yoda, I., Sakaue, K.: Concept of ubiquitous streo vision and applications for human sensing. In: CIRA 2003. Proc. 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 1251–1257. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  10. 10.
    Al-Taha, K.K., Snodgrass, R.T., Soo, M.D.: Biblography on spatiotemporal databases. SIGMOD Rec. 22(1), 59–67 (1993)CrossRefGoogle Scholar
  11. 11.
    Kim, D.H., Ryu, K.H., Park, C.H.: Design and implementation of spatiotemporal database query processing system. Journal of Systems and Software 60(1), 37–49 (2002)CrossRefGoogle Scholar
  12. 12.
    Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects database: Issues and solutions. In: Proc. of the 10th International Conference on Scientific and Statistical Database Management, pp. 111–122 (1998)Google Scholar
  13. 13.
    Jiao, B., Son, S.H., Stankovic, J.: GEM: Generic event service middleware for wireless sensor networks. In: INSS 2005. Proc. of the 2nd International Workshop on Networked Sensing Systems (June 2005)Google Scholar
  14. 14.
    Hwang, I., Han, Q., Miasra, A.: MASTAQ: A middleware architecture for sensor applications with statistical quality constraints. In: PERCOMW 2005: Proc. of the Third IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 390–395. IEEE Computer Society, Washington, DC (2005)CrossRefGoogle Scholar
  15. 15.
    Li, S., Son, S.H., Stankovic, J.A.: Event detection services using data service middleware in distributed sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 502–517. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Takeshi Ikeda
    • 1
  • Yutaka Inoue
    • 1
  • Akio Sashima
    • 1
  • Koichi Kurumatani
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST), CREST, JST, 2-41-6, Aomi, Koto, Tokyo 135-0064Japan

Personalised recommendations