Towards an Activity-Aware Wearable Computing Platform Based on an Egocentric Interaction Model

  • Thomas Pederson
  • Dipak Surie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4836)


In this paper, we present our egocentric interaction model for recog nizing and supporting everyday human activities. We explain how it allows designers of ubiquitous computing systems to view physical (real) and virtual (digital) objects as residing in one single space and how sets of objects in the vicinity of a specific human actor can be classified based on human perceptual characteristics such as what can be observed and what can be manipulated. We also propose a wearable computer architecture that is based on the egocentric interaction model which potentially could facilitate the development of Ubiqui tous Computing applications by letting an operating system take care of main taining communication with worn and instrumented sensors as well as computing devices. Finally, we present our first steps in implementing an activ ity-aware wearable support system for people suffering mild dementia based on the proposed model and architecture.


Human-Computer Interaction Ubiquitous Computing Wearable Computing Context Awareness Virtual Reality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aberer, K., Hauswirth, M., Salehi, A.: The Global Sensor Networks middleware for efficient and flexible deployment and interconnection of sensor networks. Technical report LSIR-REPORT-2006-006Google Scholar
  2. 2.
    Backman, A.: Colosseum3D - Authoring Framework for Virtual Environments. In: Proceedings of EUROGRAPHICS Workshop IPT & EGVE Workshop, pp. 225–226 (2005)Google Scholar
  3. 3.
    Bhatt, R.: Comparing the Performance of ADLs in “Virtual” and “Real Life” Environments. Dept. of Computing Science, Umeå university, report UMINF-06.40 (2006)Google Scholar
  4. 4.
    Christensen, H.B., Bardram, J.: Supporting Human Activities - Exploring Activity-Centered Computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 107–116. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Dey, A.K.: Providing Architectural Support for Building Context-Aware Applications. Ph. D. Thesis Dissertation, College of Computing, Georgia Tech. (2000)Google Scholar
  6. 6.
    Finkenzeller, K.: RFID Handbook, 2nd edn. John Wiley and Sons, New York (2003)Google Scholar
  7. 7.
    Fritzke, B.A: Growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge, MA (1995)Google Scholar
  8. 8.
    Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project Aura: Towards Distraction-Free Pervasive Computing. IEEE Pervasive Computing, special issue on Integrated Pervasive Computing Environments 21(2), 22–31 (2002)Google Scholar
  9. 9.
    Ishii, H., Ullmer, B.: Tangible Bits: Towards Seamless Interfaces between People, Bits and Atoms. In: Proceedings of CHI 1997, pp. 234–241. ACM Press, New York (1997)Google Scholar
  10. 10.
    Janlert, L.-E.: Putting Pictures in Context. In: Proceedings of AVI 2006, pp. 463–466. ACM Press, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Mackay, W., Fayard, A.-L., Frobert, L., Médini, L.: Reinventing the Familiar: Exploring an Augmented Reality Design Space for Air Traffic Control. In: Proceedings of ACM CHI 1998, Los Angeles, pp. 558–565. ACM Press, New York (1998)Google Scholar
  12. 12.
    Nardi, B. (ed.): Context and Consciousness: Activity Theory and Human-Computer Interaction. MIT Press, Cambridge (1995)Google Scholar
  13. 13.
    Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-Grained Activity Recognition by Aggregating Abstract Object Usage. In: Ninth IEEE International Symposium on Wearable Computers (2005)Google Scholar
  14. 14.
    Pederson, T.: Magic Touch: A Simple Object Location Tracking System Enabling the Development of Physical-Virtual Artefacts in Office Environments. In: Journal of Personal and Ubiquitous Computing, vol. 5, pp. 54–57. Springer, Heidelberg (2001)Google Scholar
  15. 15.
    Pederson, T.: From Conceptual Links to Causal Relations — Physical-Virtual Artefacts in Mixed-Reality Space. PhD thesis, Dept. of Computing Science, Umeå university, report UMINF-03.14 (2003) ISBN 91-7305-556-5Google Scholar
  16. 16.
    Philipose, M., Fishkin, K., Perkowitz, M., Patterson, D., Fox, D., Kautz, H., Hähnel, D.: Inferring Activities from Interactions with Objects. IEEE Pervasive Computing, 50–57 (October 2004)Google Scholar
  17. 17.
    Rabiner, L.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In: Proceedings of the IEEE, vol. 77(2), IEEE Computer Society Press, Los Alamitos (February 1989)Google Scholar
  18. 18.
    Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Personal Communications 8(4), 10–17 (2001)CrossRefGoogle Scholar
  19. 19.
    Schmidt, A.: Implicit Human Computer Interaction Through Context. Personal Technologies 4(2&3), 191–199 (2000)CrossRefGoogle Scholar
  20. 20.
    Shneiderman, B.: The future of interactive systems and the emergence of direct manipulation. Behaviour and Information Technology 1, 237–256 (1982)CrossRefGoogle Scholar
  21. 21.
    Starner, T.: The Challenges of Wearable Computing: Part 1 & 2. IEEE Micro 21(4), 44–52, 54–67 (2001)Google Scholar
  22. 22.
    Suchman, L.: Plans and situated actions: the problem of human machine interaction. Cambridge University Press, Cambridge (1987)Google Scholar
  23. 23.
    Surie, D., Pederson, T., Lagriffoul, F., Janlert, L., Sjölie, D.: Activity Recognition using an Egocentric Perspective of Everyday Objects. In: UIC 2007. Proceedings of IFIP 2007 International Conference on Ubiquitous and Intelligent Computing, Hong Kong, Springer, Heidelberg (July 11-13, 2007)Google Scholar
  24. 24.
    Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., Light, J.: The Personal Server: Changing the Way We Think about Ubiquitous Computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Weiser, M.: The Computer for the 21st Century. Scientific American 265(3), 66–75 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Thomas Pederson
    • 1
  • Dipak Surie
    • 1
  1. 1.Dept. of Computing Science, Umeå university, SE90187 UmeåSweden

Personalised recommendations