Skip to main content

Was ist Alter? Ein Mensch ist so alt wie seine Stammzellen

  • Chapter
Book cover Was ist Alter(n)?

Auszug

Die stets zunehmende Verlängerung der menschlichen Lebenserwartung ist ein Trend, der die Altersdiskussion begleitet. Ein Abknicken dieses Trends zeichnet sich bisher nicht ab. Andererseits hat der Zugewinn an Lebensjahren in den letzten Jahrzehnten zu einem erheblichen Anstieg an Degenerationskrankheiten geführt. Die Zahl der Menschen, die an chronischen, degenerativen Krankheiten leiden, wird sich weiter erhöhen und demzufolge die Kosten für die gesamte Gesellschaft. Trotz Fortschritten in der Erforschung der Krankheitsursachen und ihrer Behandlung (oder gerade deswegen?) werden Krankheitszahlen und Kosten auch in Zukunft weiter ansteigen (Schirrmacher, 2006). Allerdings treten die altersassoziierten Krankheiten vorwiegend bei Hochbetagten ab dem 85. Lebensjahr auf (bei dem so genannten „vierten Alter“) (Mooi & Peeper, 2006). Im Vergleich zu früher ist die Vitalität bei den Senioren des „dritten Alters“ (zwischen 60–85 Jahren) merklich erhöht. Können wir mit dem biomedizinischen Fortschritt über eine Erhöhung der allgemeinen Lebenserwartung hinaus die Lebensphase des „dritten Alters“ und vielleicht einiger Jahre des „vierten Alters“ aktiver und gesünder gestalten? Im Zuge der allgemeinen Bevölkerungsentwicklung würde dann eine Gesellschaft entstehen, in der viel mehr ältere Menschen eine aktive Rolle spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bernard, S., Belair, J. & Mackey, M. C. (2004). Bifurcations in a white-blood-cell production model. C. R. Biol., 327, 201–210.

    Article  PubMed  Google Scholar 

  • Bieback, K., Kern, S., Kluter, H. & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood Stem. Cells, 22, 625–634.

    Google Scholar 

  • Carmel, R. (2001). Anemia and aging: an overview of clinical, diagnostic and biological issues. Blood Rev., 15, 9–18.

    Article  PubMed  CAS  Google Scholar 

  • Colijn, C. & Mackey, M. C. (2005). A mathematical model of hematopoiesis — I. Periodic chronic myelogenous leukemia. J. Theor. Biol., 237, 117–132.

    Article  PubMed  Google Scholar 

  • Erices, A., Conget, P. & Minguell, J.J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol., 109, 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Finkel, T. & Holbrook, N.J. (11-9-2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein, A. J., Piatetzky-Shapiro, I. I. & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol., 16, 381–390.

    PubMed  CAS  Google Scholar 

  • Fruehauf, S., Seeger, T. & Topaly, J. (2005). Innovative strategies for PBPC mobilization. Cytotherapy, 7, 438–446.

    Article  PubMed  CAS  Google Scholar 

  • Fruehauf, S. & Seggewiss, R. (2003). It’s moving day: factors affecting peripheral blood stem cell mobilization and strategies for improvement [corrected]. Br. J. Haematol., 122, 360–375.

    Article  PubMed  CAS  Google Scholar 

  • Gilford, H. (1994). Progeria: A form of senilism. Practitioner, 73, 188.

    Google Scholar 

  • Gomez, C. R., Boehmer, E. D. & Kovacs, E. J. (2005). The aging innate immune system. Curr. Opin. Immunol., 17, 457–462.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, H. S., Bicknese, A. R., Chien, S. N., Bogucki, B. D., Quinn, C. O. & Wall, D. A. (2001). Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol. Blood Marrow Transplant., 7, 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D.E. (1983). Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. J. Exp. Med., 157, 1496–1504.

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L. & Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp. Cell Res., 25, 585–621.

    Article  Google Scholar 

  • Ho, A. D. & Punzel, M. (2003). Hematopoietic stem cells: can old cells learn new tricks? J. Leukoc. Biol., 73, 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Ho, A. D. & Wagner, W. (2007). The beauty of asymmetry: asymmetric divisions and selfrenewal in the haematopoietic system. Curr. Opin. Hematol., 14, 330–336.

    Article  PubMed  Google Scholar 

  • Ho, A. D., Wagner, W. & Eckstein, V. (2007). Was ist Alter? Ein Mensch ist so alt wie seine Stammzellen. BW Woche, Staatsanzeiger Verlag.

    Google Scholar 

  • Ho, A. D., Wagner, W. & Mahlknecht, U. (2005). Stem cells and ageing. The potential of stem cells to overcome age-related deteriorations of the body in regenerative medicine. EMBO Rep., 6 (Spec No, S35–S38.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, J. (1886). Case of congenital absence of hair with atophic condition of the skin and its appendages in a boy whose mother had been almost wholly balk from alopecia areata from the age of six. Lancet, 1, 923.

    Google Scholar 

  • Janzen, V., Forkert, R., Fleming H. E., Saito, Y., Waring, M. T., Dombkowski, D. M., Cheng, T., DePinho, R. A., Sharpless, N. E. & Scadden D. T. (2006). Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 443, 421–426.

    PubMed  CAS  Google Scholar 

  • Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., & Verfaillie, C. M. (2002a). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., & Verfaillie, C. M. (2002b). Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol., 30, 896–904.

    Article  PubMed  CAS  Google Scholar 

  • Ju, Z., Jiang, H., Jaworski, M., Rathinam, C., Gompf, A., Klein, C., Trumpp, A. & Rudolph, K. L. (2007). Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat. Med., 13, 742–747.

    Article  PubMed  CAS  Google Scholar 

  • Kamminga, L. M. & de Haan, G. (2006). Cellular memory and hematopoietic stem cell aging. Stem Cells, 24, 1143–1149.

    Article  PubMed  CAS  Google Scholar 

  • Kipling, D., Davis, T., Ostler, E.L. & Faragher, R.G. (2004). What can progeroid syndromes tell us about human aging?. Science, 305, 1426–1431.

    Article  PubMed  CAS  Google Scholar 

  • Kogler, G., Sensken, S., Airey, J.A., Trapp, T., Muschen, M., Feldhahn, N., Liedtke, S., Sorg, R. V., Fischer, J., Rosenbaum, C., Greschat, S., Knipper, A., Bender, J., Degistirici, O., Gao, J., Caplan, A.I., Colletti, E.J., Meida-Porada, G., Muller, H.W., Zanjani, E., & Wernet, P. (2004). A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med., 200, 123–135.

    Article  PubMed  Google Scholar 

  • Liu, J. & Finkel, T., (2006). Stem cell aging: what bleach can teach. Nat. Med., 12, 383–384.

    Article  PubMed  CAS  Google Scholar 

  • Maximow, A. (1909) Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leber der Säugetiere. Haematol. (Leipzig), 8, 125–141.

    Google Scholar 

  • Mooi, W. J. & Peeper, D. S. (2006). Oncogene-induced cell senescence-halting on the road to cancer. N. Engl. J. Med., 355, 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, S. J., Wandyez, A. M., Akashi, K., Globerson, A. & Weissman I. L. (1996). The aging of hematopoietic stem cells. Nat. Med., 2, 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  • Muotri, A.R. & Gage, F.H. (2006). Generation of neuronal variability and complexity. Nature, 441, 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  • Ogden, D.A. & Mickliem, H.S. (1976). The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation, 22, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, B.E., Bowen, W.C., Patrene, K.D., Mars, W.M., Sullivan, A.K. Murase, N., Boggs, S.S., Greenberger, J.S. & Goff, J.P. (1999). Bone marrow as a potential source of hepatic oval cells. Science, 284, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger, M.F., Mackay A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. & Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Prockop, D.J. (1997). Marrow stromal cells as stem cells from nonhematopoietic tissues. Science, 276, 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Prockop, D. J., Gregory, C. A. & Spees, J. L. (2003). One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc. Natl. Acad. Sci. USA, 100 Suppl 1, 11917–11923.

    Article  PubMed  CAS  Google Scholar 

  • Punzel, M. & Ho, A. D. (2001). Divisional history and pluripotency of human hematopoietic stem cells. Ann. N. Y. Acad. Sci., 938, 72–81.

    Article  PubMed  CAS  Google Scholar 

  • Rando, T.A. (2006). Stem cells, ageing and the quest for immortality. Nature, 441, 1080–1086.

    Article  PubMed  CAS  Google Scholar 

  • Roeder, I. & Loeffler, M. (2002). A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity. Exp. Hematol., 30, 853–861.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, D. J., Bryder, D., Zahn, J. M., Ahlenius, H., Sonu, R., Wagers, A.J. & Weissman, I.L. (2005). Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl. Acad. Sci. USA, 102, 9194–9199.

    Article  PubMed  CAS  Google Scholar 

  • Schirrmacher, F. (2006). Das Methusalem-Komplott. München: Heyne

    Google Scholar 

  • Schwartz, R.E., Reyes, M., Koodie, L., Jiang, Y., Blackstad, M., Lund, T., Lenvik, T., Johnson, S., Hu, W.S. & Verfaillie, C.M. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest., 109, 1291–1302.

    PubMed  CAS  Google Scholar 

  • Siminovich, L., Culloch, E.A. & Till, J.E. (1963). The distribution of colony-forming cells among spleen colonies. J. Cell Physiol., 62, 327–336.

    Article  Google Scholar 

  • Siminovich, L. Till, J.E. & Culloch, E.A. (1964). Decline in collony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J. Cell Physiol., 64, 23–31.

    Article  Google Scholar 

  • Stamm, C., Westphal, B., Kleine, H.D., Petzsch, M., Kittner, C., Klinge, H., Schumichen, C., Nienaber, C.A., Freund, M. & Steinhoff, G. (2003). Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 361, 45–46.

    Article  PubMed  Google Scholar 

  • Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. (2000). Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med., 192, 1273–1280.

    Article  PubMed  CAS  Google Scholar 

  • Vaziri, H., Dragowska, W., Allsopp, R.C., Thomas, T.E., Harley, C.B. & Lansdorp, P.M. (1994). Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA, 91, 9857–9860.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, W., Ansorge, A., Wirkner, U., Eckstein, V., Schwager, C., Blake, J., Miesala, K., Selig, J., Saffrich, R., Ansorge, W. & Ho, A.D. (2004). Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood, 104, 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, W., Saffrich, R., Wirkner, U., Eckstein, V., Blake, J., Ansorge, A., Schwager, C., Wein, F., Miesala, K., Ansorge, W. & Ho, A.D. (2005). Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. Stem Cells, 23, 1180–1191.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, W., Wein, F., Roderburg, C., Saffrich, R., Faber, A., Krause, U., Schubert, M., Benes, V., Eckstein, V., Maul, H. & Ho, A.D. (2007). Adhesion of hematopoietic progenitor cells to human mesenchymal stromal cells as a model for cell-cell interaction. Exp. Hematol., 35, 314–325.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F.M. & Hogan, B.L. (2000). Out of Eden: stem cells and their niches. Science, 287, 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. & Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol., 6, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, S., Glaser, S., Ketteler, R., Waller, C.F., Klingmuller, U. & Martens, U.M. (2004). Effects of telomerase modulation in human hematopoietic progenitor cells. Stem Cells, 22, 741–749.

    Article  PubMed  CAS  Google Scholar 

  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. & Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng., 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ho, A.D., Wagner, W., Eckstein, V. (2008). Was ist Alter? Ein Mensch ist so alt wie seine Stammzellen. In: Staudinger, U.M., Häfner, H. (eds) Was ist Alter(n)?. Schriften der Mathematisch-naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76711-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76711-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76710-7

  • Online ISBN: 978-3-540-76711-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics