Skip to main content

Homocysteine, S-adenosylmethionine and S-adenosylhomocysteine

  • Chapter
Laboratory Guide to the Methods in Biochemical Genetics

Abstract

Homocysteine and the related metabolites S-adenosylmethionine and S-adenosylhomocysteine play a vital role in several vital biological processes. Disturbed levels are found in inborn errors of methionine metabolism as well as in other pathological states such as vitamin B12 or folate deficiency and renal disease. Moderately elevated plasma total homocysteine is associated with various forms of vascular disease and less strongly with neural-tube defects, neuropsychiatric disorders, impaired cognitive function, dementia, and osteoporosis. Plasma total homocysteine is measured in many routine laboratories employing various methods. The laboratory measurement of S-adenosylmethionine and S-adenosylhomocysteine in plasma plays an increasing role in studies of pathogenesis of elevated homocysteine as well as the differential diagnosis of hypermethioninaemia due to deficiencies of methionine adenosyltransferase, glycine methyltransferase or S-adenosylhomocysteine hydrolase. Those methods that are often available in laboratories involved in the investigation of inborn errors of metabolism namely HPLC and tandem mass spectrometry are described in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1:228–237

    Article  PubMed  CAS  Google Scholar 

  2. Fowler B (2005) Homocysteine: overview of biochemistry, molecular biology, and role in disease processes. Semin Vasc Med 5:77–86

    Article  PubMed  Google Scholar 

  3. Clarke S, Banfield K (2001) S-adenosylmethionine-dependent methyltransferases. In: Carmel R, Jacobsen D (eds) Homocysteine in Health and Disease. Cambridge University Press, Cambridge UK, pp 63–78

    Google Scholar 

  4. Yeo E, Wagner C (1994) Tissue binding of glycine N-methyltransferase, a major folate-binding protein of liver. Proc Natl Acad Sci U S A 91:210–214

    Article  PubMed  CAS  Google Scholar 

  5. Johnson JL, Duran M (2001) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw-Hill, New York, NY, pp 3163–3177

    Google Scholar 

  6. Finkelstein JD (2000) Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 26:219–225

    Article  PubMed  CAS  Google Scholar 

  7. Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157:S40–44

    Article  PubMed  CAS  Google Scholar 

  8. Fowler B (2001) Transport and tissue distribution of homocysteine and related S-adenosyl compounds. In: Carmel R, Jacobsen D (eds) Homocysteine in Health and Disease. Cambridge University Press, Cambridge UK, pp 163–174

    Google Scholar 

  9. Mudd. SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw-Hill, New York, NY, pp 2007–2056

    Google Scholar 

  10. Rosenblatt DS, Erbe RW (2001) Inherited disorders of folate and cobalamin transport and metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw-Hill, New York, NY, pp 3897–3933

    Google Scholar 

  11. Fenton WA, Gravel RA, Rosenblatt DS (2001) Disorders of propionate and methylmalonic acid metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw-Hill, New York, NY, pp 2165–2193

    Google Scholar 

  12. Sass JO, Nakanishi T, Sato T, Shimizu A (2004) New approaches towards laboratory diagnosis of isolated sulphite oxidase deficiency. Ann Clin Biochem 41:157–159

    Article  PubMed  CAS  Google Scholar 

  13. Stabler SP, Marcell PD, Podell ER, Allen RH, Savage DG, Lindenbaum J (1988) Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest 81:466–474

    Article  PubMed  CAS  Google Scholar 

  14. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270:2693–2698

    Article  PubMed  CAS  Google Scholar 

  15. Löhrer FMT, Angst CP, Brunner FP, Haefeli WE, Fowler B (1998) Evidence for disturbed S-adenosylmethionine:AdoHcy ratio in patients with end-stage renal failure: a cause for disturbed methylation reactions? Nephrol Dial Transplant 13:656–661

    Article  Google Scholar 

  16. Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288:2015–2022

    Article  Google Scholar 

  17. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, Johnston C, Engbaek F, Schneede J, McPartlin C, Scott JM (2004) Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 50:3–32

    Article  PubMed  CAS  Google Scholar 

  18. Loehrer FMT, Angst CP, Haefeli WE, Jordan PP, Ritz R, Fowler B (1996) Low whole-blood S-adenosylmethionine and correlation between 5-methyltetrahydrofolate and homocysteine in coronary artery disease. Arter Thromb Vasc Biol 16:727–733

    CAS  Google Scholar 

  19. Capdevila A, Wagner C (1998) Measurement of plasma S-adenosylmethionine and A-adenosylhomocysteine as their fluorescent isoindoles. Analyt Biochem 264:180–184

    Article  PubMed  CAS  Google Scholar 

  20. Loehrer FMT, Haefeli WE, Angst CP, Browne G, Frick G, Fowler B (1996) Effect of methionine loading on 5-methyltetrahydrofolate, S-adenosylmethionine and S-adenosylhomocysteine in plasma of healthy humans. Clin Sci 981:79–86

    Google Scholar 

  21. Loehrer FMT, Schwab R, Angst CP, Haefeli WE, Fowler B (1997) Influence of oral S-adenosylmethionine on plasma 5-methyltetrahydrofolate, S-adenosylhomocysteine, homocysteine and methionine in healthy humans. J Pharmacol Exp Therapeut 282:845–850

    CAS  Google Scholar 

  22. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, Tavares de Almeida I (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49:1292–1296

    Article  PubMed  CAS  Google Scholar 

  23. Gellekink H, van Oppenraaij-Emmerzaal D, van Rooij A, Struys EA, den Heijer M, Blom HJ (2005) Stable-isotope dilution liquid chromatography-electrospray injection tandem mass spectrometry method for fast, selective measurement of S-adenosylmethionine and S-adenosylhomocysteine in plasma. Clin Chem 51:1487–1492

    Article  PubMed  CAS  Google Scholar 

  24. Araki A, Sako Y (1987) Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 422:43–52

    Article  PubMed  CAS  Google Scholar 

  25. Ubbink JB, Hayward Vermaak WJ, Bissbort S (1991) Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J Chromatogr 565:441–446

    Article  PubMed  CAS  Google Scholar 

  26. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH (1993) Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 39:1764–79

    PubMed  CAS  Google Scholar 

  27. Vilaseca MA, Moyano D, Ferrer I, Artuch R (1997) Total homocysteine in pediatric patients. Clin Chem 43:690–692

    PubMed  CAS  Google Scholar 

  28. Wagner J, Hirth Y, Claverie N, Danzin C (1986) A sensitive high-performance liquid chromatographic procedure with fluorimetric detection for the analysis of decarboxylated S-adenosylmethionine and analogues in urine samples. Anal. Biochem 154:604–617

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fowler, B. (2008). Homocysteine, S-adenosylmethionine and S-adenosylhomocysteine. In: Blau, N., Duran, M., Gibson, K. (eds) Laboratory Guide to the Methods in Biochemical Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76698-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76698-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76697-1

  • Online ISBN: 978-3-540-76698-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics