Skip to main content

Acylcarnitines, Including In Vitro Loading Tests

  • Chapter

Abstract

Acylcarnitine analysis for the diagnosis of organic acidemias and particularly of fatty acid oxidation (FAO) disorders plays an increasingly prominent role in all venues of clinical biochemical genetics: prenatal diagnosis, newborn screening, evaluation of symptomatic patients, and postmortem screening. Almost exclusively performed by tandem mass spectrometry (MS/MS), plasma/serum is the primary specimen type in diagnostic settings. Blood dried on filter paper is analyzed for newborn screening and together with bile in the postmortem evaluation of cases of sudden and unexpected death. Cell-free supernatant of amniotic fluid is used for the prenatal diagnosis of selected inborn errors of metabolism. Cultured fibroblasts or amniocytes can be probed with FAO substrates and carnitine. Cell cultures deficient of an FAO enzyme will accumulate specific acylcarnitine species when incubated with substrates such as palmitate, allowing for the diagnosis of FAO disorders and several organoacidopathies. Acylcarnitine analysis using stable isotope-labeled internal standards provides quantitative data for acylcarnitine species. However, to provide meaningful results to referring health care providers, it is critical to complement analytical proficiency with in-depth interpretation of results as is true for many other examples of complex metabolic profiles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bremer J (1983) Carnitine – metabolism and functions. Physiol Rev 63:1420–1480

    PubMed  CAS  Google Scholar 

  2. Gulewitsch WI, Krimberg R (1905) Zur Kenntnis der Extraktivstoffe der Muskeln. II. Mitteilung. Ueber das Carnitin. Hoppe Seylers Z Physiol Chem 45:326–330

    CAS  Google Scholar 

  3. Tomita M, Sendju Y (1927) Über die Oxyaminverbindungen, welche die Biuretreaktion zeigen. III. Spaltung der gamma-Amino-beta-oxy-buttersäure in die optisch-aktiven Komponenten. Hoppe Seylers Z Physiol Chem 169:263–277

    CAS  Google Scholar 

  4. Carter HE, Bhattacharyya PK, Weidman KR, Fraenkel G (1952) Chemical studies on vitamin BT isolation and characterization as carnitine. Arch Biochem Biophys 38:405–416

    Article  PubMed  CAS  Google Scholar 

  5. Bhattacharyya PK, Carter HE, Fraenkel G, Weidman KR (1952) The identity of vitamin BT with carnitine. Arch Biochem 35:241–242

    Article  PubMed  CAS  Google Scholar 

  6. Engel AG, Angelini C (1973) Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 179:899–902

    Article  PubMed  CAS  Google Scholar 

  7. DiMauro S, DiMauro PM (1973) Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science 182:929–931

    Article  PubMed  CAS  Google Scholar 

  8. Rinaldo P, Matern D, Bennett MJ (2002) Fatty Acid oxidation disorders. Annu Rev Physiol 64:477–502

    Article  PubMed  CAS  Google Scholar 

  9. Zhang J, Zhang W, Zou D, et a (2002) Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochem Biophys Res Commun 297:1033–1042

    Article  PubMed  CAS  Google Scholar 

  10. Ensenauer R, He M, Willard JM, et al (2005) Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids. J Biol Chem 280:32309–32316

    Article  PubMed  CAS  Google Scholar 

  11. Roe CR, Bohan TP (1982) L-carnitine therapy in propionicacidaemia. Lancet 1:1411–1412

    Article  PubMed  CAS  Google Scholar 

  12. Roe CR, Hoppel CL, Stacey TE, Chalmers RA, Tracey BM, Millington DS (1983) Metabolic response to carnitine in methylmalonic aciduria. An effective strategy for elimination of propionyl groups. Arch Dis Child 58:916–920

    Article  PubMed  CAS  Google Scholar 

  13. Chalmers RA, Roe CR, Stacey TE, Hoppel CL (1988) Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: evidence for secondary insufficiency of l-carnitine. Pediatr Res 18:1325–1328

    Article  Google Scholar 

  14. Millington DS, Roe CR, Maltby DA (1984) Application of high resolution fast atom bombardment and constant B/E ratio linked scanning to the identification and analysis of acylcarnitines in metabolic disease. Biomed Mass Spectrom 11:236–241

    Article  PubMed  CAS  Google Scholar 

  15. Roe CR, Millington DS, Maltby DA, Kahler SG, Bohan TP (1984) L-carnitine therapy in isovaleric acidemia. J Clin Invest 74:2290–2295

    Article  PubMed  CAS  Google Scholar 

  16. Roe CR, Millington DS, Maltby DA, Bohan TP, Hoppel CL (1984) L-carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia. J Clin Invest 73:1785–1788

    Article  PubMed  CAS  Google Scholar 

  17. Millington DS, Terada N, Chace DH, et al (1992) The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Prog Clin Biol Res 375:339–354

    PubMed  CAS  Google Scholar 

  18. Pitt JJ, Eggington M, Kahler SG (2002) Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem 48:1970–1980

    PubMed  CAS  Google Scholar 

  19. Tortorelli S, Hahn SH, Cowan TM, Brewster TG, Rinaldo P, Matern D (2005) The urinary excretion of glutarylcarnitine is an informative tool in the biochemical diagnosis of glutaric acidemia type I. Mol Genet Metab 84:137–143

    Article  PubMed  CAS  Google Scholar 

  20. Ensenauer R, Vockley J, Willard JM, et al (2004) A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet 75:1136–1142

    Article  PubMed  CAS  Google Scholar 

  21. Oglesbee D, He M, Majumder N, et al (2007) Development of a newborn screening follow-up algorithm for the diagnosis of isobutyryl-CoA dehydrogenase deficiency. Genet Med 9:108–116

    Article  PubMed  CAS  Google Scholar 

  22. Millington DS, Kodo N, Norwood DL, Roe CR (1990) Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis 13:321–324

    Article  PubMed  CAS  Google Scholar 

  23. Rinaldo P, Hahn S, Matern D (2004) Clinical biochemical genetics in the twenty-first century. Acta Paediatr 93:22–26

    CAS  Google Scholar 

  24. Rinaldo P, Studinski AL, Matern D (2001) Prenatal diagnosis of disorders of fatty acid transport and mitochondrial oxidation. Prenat Diagn 21:52–54

    Article  PubMed  CAS  Google Scholar 

  25. Morel CF, Watkins D, Scott P, Rinaldo P, Rosenblatt DS (2005) Prenatal diagnosis for methylmalonic acidemia and inborn errors of vitamin B12 metabolism and transport. Mol Genet Metab 86:160–171

    Article  PubMed  CAS  Google Scholar 

  26. Braida L, Crovella S, Boniotto M, et al (2001) A rapid and quantitative mass spectrometry method for determining the concentration of acylcarnitines and amino acids in amniotic fluid. Prenat Diagn 21:543–546

    Article  PubMed  CAS  Google Scholar 

  27. Van Hove JL, Chace DH, Kahler SG, Millington DS (1993) Acylcarnitines in amniotic fluid: application to the prenatal diagnosis of propionic acidaemia. J Inherit Metab Dis 16:361–367

    Article  PubMed  Google Scholar 

  28. Nada MA, Rhead WJ, Sprecher H, Schulz H, Roe CR (1995) Evidence for intermediate channeling in mitochondrial beta-oxidation. J Biol Chem 270:530–535

    Article  PubMed  CAS  Google Scholar 

  29. Nada MA, Vianey-Saban C, Roe CR, et al (1996) Prenatal diagnosis of mitochondrial fatty acid oxidation defects. Prenat Diagn 16:117–124

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt-Sommerfeld E, Bobrowski PJ, Penn D, Rhead WJ, Wanders RJA, Bennet MJ (1998) Analysis of carnitine esters by radio-high performance liquid chromatography in cultured skin fibroblasts from patients with mitochondrial fatty acid oxidation disorders. Pediatr Res 44:210–214

    Article  PubMed  CAS  Google Scholar 

  31. Roe CR, Roe DS (1999) Recent developments in the investigation of inherited metabolic disorders using cultured human cells. Mol Genet Metab 68:243–257

    Article  PubMed  CAS  Google Scholar 

  32. Ventura FV, Costa CG, Struys EA, et al (1999) Quantitative acylcarnitine profiling in fibroblasts using U-C-13 palmitic acid: an improved tool for the diagnosis of fatty acid oxidation defects. Clin Chim Acta281:1–17

    Article  PubMed  CAS  Google Scholar 

  33. Shen JJ, Matern D, Millington DS, et al (2000) Acylcarnitines in fibroblasts of patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and other fatty acid oxidation disorders. J Inherit Metab Dis 23:27–44

    Article  PubMed  CAS  Google Scholar 

  34. Roe DS, Vianey-Saban C, Sharma S, Zabot MT, Roe CR (2001) Oxidation of unsaturated fatty acids by human fibroblasts with very-long-chain acyl-CoA dehydrogenase deficiency: aspects of substrate specificity and correlation with clinical phenotype. Clin Chim Acta 312:55–67

    Article  PubMed  CAS  Google Scholar 

  35. Giak Sim K, Carpenter K, Hammond J, Christodoulou J, Wilcken B (2002) Quantitative fibroblast acylcarnitine profiles in mitochondrial fatty acid beta-oxidation defects: phenotype/metabolite correlations. Mol Genet Metab 76:327–334

    Article  PubMed  CAS  Google Scholar 

  36. Okun JG, Kolker S, Schulze A, et al (2002) A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim Biophys Acta 1584:91–98

    PubMed  CAS  Google Scholar 

  37. Young SP, Matern D, Gregersen N, et al (2003) A comparison of in vitro acylcarnitine profiling methods for the diagnosis of classical and variant short chain acyl-CoA dehydrogenase deficiency. Clin Chim Acta 337:103–113

    Article  PubMed  CAS  Google Scholar 

  38. Schulze-Bergkamen A, Okun JG, Spiekerkotter U, et al (2005) Quantitative acylcarnitine profiling in peripheral blood mononuclear cells using in vitro loading with palmitic and 2-oxoadipic acids: biochemical confirmation of fatty acid oxidation and organic acid disorders. Pediatr Res 58:873–880

    Article  PubMed  CAS  Google Scholar 

  39. American College of Medical Genetics. Standards and Guidelines for Clinical Genetics Laboratorie, 2005

    Google Scholar 

  40. Vaz FM, Wanders RJ (2002) Carnitine biosynthesis in mammals. Biochem J 361:417–429

    Article  PubMed  CAS  Google Scholar 

  41. Hamilton JJ, Hahn P (1987) Carnitine and carnitine esters in rat bile and human duodenal fluid. Can J Physiol Pharmacol 65:1816–1820

    PubMed  CAS  Google Scholar 

  42. Rashed MS, Ozand PT, Bennett MJ, Barnard JJ, Govindaraju DR, Rinaldo P (1995) Inborn errors of metabolism diagnosed in sudden death cases by acylcarnitine analysis of postmortem bile. Clin Chem 41:1109–1114

    PubMed  CAS  Google Scholar 

  43. Jakobs BS, Wanders RJ (1995) Fatty acid beta-oxidation in peroxisomes and mitochondria: the first, unequivocal evidence for the involvement of carnitine in shuttling propionyl-CoA from peroxisomes to mitochondria. Biochem Biophys Res Commun 213:1035–1041

    Article  PubMed  CAS  Google Scholar 

  44. Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J (2004) Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 25:495–520

    Article  PubMed  CAS  Google Scholar 

  45. Bieber LL, Choi YR (1977) Isolation and identification of aliphatic short-chain acylcarnitines from beef heart: possible role for carnitine in branched-chain amino acid metabolism. Proc Natl Acad Sci U S A 74:2795–2798

    Article  PubMed  CAS  Google Scholar 

  46. Costa CG, Struys EA, Bootsma A, et al (1997) Quantitative analysis of plasma acylcarnitines using gas chromatography chemical ionization mass fragmentography. J Lipid Res 38:173–182

    PubMed  CAS  Google Scholar 

  47. Schmidt-Sommerfeld E, Penn D, Duran M, et al (1992) Detection and quantitation of acylcarnitines in plasma and blood spots from patients with inborn errors of fatty acid oxidation. Prog Clin Biol Res 375:355–362

    PubMed  CAS  Google Scholar 

  48. Yergey AL, Liberato DJ, Millington DS (1984) Thermospray liquid chromatography/mass spectrometry for the analysis of L-carnitine and its short-chain acyl derivatives. Anal Biochem 139:278–283

    Article  PubMed  CAS  Google Scholar 

  49. Millington DS, Bohan TP, Roe CR, Yergey AL, Liberato DJ (1985) Valproylcarnitine: a novel drug metabolite identified by fast atom bombardment and thermospray liquid chromatography-mass spectrometry. Clin Chim Acta 145:69–76

    Article  PubMed  CAS  Google Scholar 

  50. Millington DS, Maltby DA, Roe CR (1986) Rapid detection of argininosuccinic aciduria and citrullinuria by fast atom bombardment and tandem mass spectrometry. Clin Chim Acta 155:173–178

    Article  PubMed  CAS  Google Scholar 

  51. Millington DS, Norwood DL, Kodo N, Roe CR, Inoue F (1989) Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography/mass spectrometry to the analysis of acylcarnitines in human urine, blood, and tissue. Anal Biochem 180:331–339

    Article  PubMed  CAS  Google Scholar 

  52. Matern D, Magera MJ (2001) Mass spectrometry methods for metabolic and health assessment. J Nutr 131:1615S–1620S

    PubMed  CAS  Google Scholar 

  53. Heinig K, Henion J (1999) Determination of carnitine and acylcarnitines in biological samples by capillary electrophoresis-mass spectrometry. J Chromatogr B Biomed Sci Appl 735:171–188

    Article  PubMed  CAS  Google Scholar 

  54. Ghoshal AK, Guo T, Soukhova N, Soldin SJ (2005) Rapid measurement of plasma acylcarnitines by liquid chromatography-tandem mass spectrometry without derivatization. Clin Chim Acta 358:104–112

    Article  PubMed  CAS  Google Scholar 

  55. Matern D, Strauss AW, Hillman SL, Mayatepek E, Millington DS, Trefz FK (1999) Diagnosis of mitochondrial trifunctional protein deficiency in a blood spot from the newborn screening card by tandem mass spectrometry and DNA analysis. Pediatr Res 46:45–49

    Article  PubMed  CAS  Google Scholar 

  56. Browning MF, Larson C, Strauss A, Marsden DL (2005) Normal acylcarnitine levels during confirmation of abnormal newborn screening in long-chain fatty acid oxidation defects. J Inherit Metab Dis 28:545–550

    Article  PubMed  CAS  Google Scholar 

  57. Van Hove JL, Kahler SG, Feezor MD, et al (2000) Acylcarnitines in plasma and blood spots of patients with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. J Inherit Metab Dis 23:571–582

    Article  PubMed  Google Scholar 

  58. Koeberl DD, Young SP, Gregersen NS, et al (2003) Rare disorders of metabolism with elevated butyryl- and isobutyryl-carnitine detected by tandem mass spectrometry newborn screening. Pediatr Res 54:219–223

    Article  PubMed  CAS  Google Scholar 

  59. Matern D, He M, Berry SA, et al (2003) Prospective diagnosis of 2-methylbutyryl-CoA dehydrogenase deficiency in the Hmong population by newborn screening using tandem mass spectrometry. Pediatrics 112:74–78

    Article  PubMed  Google Scholar 

  60. Abdenur JE, Chamoles NA, Guinle AE, Schenone AB, Fuertes AN (1998) Diagnosis of isovaleric acidaemia by tandem mass spectrometry: false positive result due to pivaloylcarnitine in a newborn screening programme. J Inherit Metab Dis 21:624–630

    Article  PubMed  CAS  Google Scholar 

  61. Gibson KM, Bennett MJ, Naylor EW, Morton DH (1998) 3-Methylcrotonyl-coenzyme a carboxylase deficiency in amish/mennonite adults identified by detection of increased acylcarnitines in blood spots of their children. J Pediatr 132:519–523

    Article  PubMed  CAS  Google Scholar 

  62. Hintz SR, Matern D, Strauss A, et al (2002) Early neonatal diagnosis of long-chain 3-hydroxyacyl coenzyme a dehydrogenase and mitochondrial trifunctional protein deficiencies. Mol Genet Metab 75:120–127

    Article  PubMed  CAS  Google Scholar 

  63. Vianey-Saban C, Boyer S, Levrat V, et al (2004) Interference of Cefotaxime in plasma acylcarnitine profile mimicking an increase of 3-hydroxypalmitoleylcarnitine (C16:1-OH) using butyl esters. J Inherit Metab Dis 27:94

    Google Scholar 

  64. Malvagia S, la Marca G, Casetta B, et al (2006) Falsely elevated C4-carnitine as expression of glutamate formiminotransferase deficiency in tandem mass spectrometry newborn screening. J Mass Spectrom 41:263–265

    Article  PubMed  CAS  Google Scholar 

  65. Roe DS, Yang BZ, Vianey-Saban C, Struys E, Sweetman L, Roe CR (2006) Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts. Mol Genet Metab 87:40–47

    Article  PubMed  CAS  Google Scholar 

  66. Carrozzo R, Dionisi-Vici C, Steuerwald U, et al. (2007) SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130(Pt 3):862-74.

    Article  PubMed  Google Scholar 

  67. Roe CR, Sweetman L, Roe DS, David F, Brunengraber H (2002) Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 110:259–269

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matern, D. (2008). Acylcarnitines, Including In Vitro Loading Tests. In: Blau, N., Duran, M., Gibson, K. (eds) Laboratory Guide to the Methods in Biochemical Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76698-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76698-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76697-1

  • Online ISBN: 978-3-540-76698-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics