Skip to main content

High-field Magnetoresistive Effects in Reduced-Dimensionality Organic Metals and Superconductors

  • Chapter
The Physics of Organic Superconductors and Conductors

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 110))

The large charge-transfer anisotropy of quasi-one- and quasi-two-dimensional crystalline organic metals means that magnetoresistance is one of the most powerful tools for probing their bandstructure and interesting phase diagrams. Here we review various magnetoresistance phenomena that are of interest in the investigation of metallic, superconducting and charge-density-wave organic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Powell, R.H. McKenzie, J. Phys. Condens. Matter 16, L367 (2004)

    Article  ADS  Google Scholar 

  2. M.T. Dressel, N. Drichko, Chem. Rev. 104, 5689 (2004)

    Article  Google Scholar 

  3. J. Singleton, C.H. Mielke, Contemp. Phys. 43, 63 (2002)

    Article  ADS  Google Scholar 

  4. B.J. Powell, R.H. McKenzie, Phys. Rev. Lett. 94, 047004 (2005)

    Article  ADS  Google Scholar 

  5. B.J. Powell, R.H. McKenzie, Phys. Rev. B 69, 024519 (2004)

    Article  ADS  Google Scholar 

  6. F. Kagawa, T. Itou, K. Miyagawa, K. Kanoda, Phys. Rev. Lett. 93, 127001 (2004)

    Article  ADS  Google Scholar 

  7. S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jrome, C. Mzire, M. Fourmigu, P. Batail, Phys. Rev. Lett. 85, 5420 (2000)

    Article  ADS  Google Scholar 

  8. R.D. McDonald, A.K. Klehe, J. Singleton, W. Hayes, J. Phys. Condens. Matter 15, 5315 (2003)

    Article  ADS  Google Scholar 

  9. P.A. Goddard, S.J. Blundell, J. Singleton, R.D. McDonald, A. Ardavan, A. Narduzzo, J.A. Schlueter, A.M. Kini, T. Sasaki, Phys. Rev. B 69, 174509 (2004)

    Article  ADS  Google Scholar 

  10. J. Singleton, C.H. Mielke, W. Hayes, J.A. Schlueter, J. Phys. Condens. Matter 15, L203 (2003)

    Article  ADS  Google Scholar 

  11. A.I. Coldea, A.F. Bangura, J. Singleton, A. Ardavan, A. Akutsu-Sato, H. Akutsu, S.S. Turner, S.S.P. Day, Phys. Rev. B 69, 085112 (2004)

    Article  ADS  Google Scholar 

  12. J. Merino, R.H. McKenzie, Phys. Rev. Lett. 87, 237002 (2001)

    Article  ADS  Google Scholar 

  13. P.A. Goddard, S.W. Tozer, J. Singleton, A. Ardavan, A. Abate, M. Kurmoo, J. Phys. Condens. Matter 14, 7345 (2002)

    Article  ADS  Google Scholar 

  14. J. Singleton, Rep. Prog. Phys. 63, 1111 (2000)

    Article  ADS  Google Scholar 

  15. S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, H. Kobayashi, Nature 410, 908 (2001)

    Article  ADS  Google Scholar 

  16. J. Singleton, J.A. Symington, M.S. Nam, A. Ardavan, M. Kurmoo, P. Day, J. Phys. Condens. Matter 12, L641 (2000)

    Article  ADS  Google Scholar 

  17. V.F. Mitrovic, M. Horvatic, C. Bethier, G. Knebel, G. Lapertot, J. Flouquet, Phys. Rev. Lett., (in press)

    Google Scholar 

  18. M.A. Tanatar, T. Ishiguro, H. Tanaka, H. Kobayashi, Phys. Rev. B 66, 134503 (2002)

    Article  ADS  Google Scholar 

  19. A.F. Bangura, A.I. Coldea, J. Singleton, A. Ardavan, A. Akutsu-Sato, T. Akutsu, S.S. Turner, P. Day, T. Yamamoto, K. Yakushi, Phys. Rev. B 72, 014543 (2005)

    Article  ADS  Google Scholar 

  20. J. Schmalian, Phys. Rev. Lett. 81, 4232 (1998)

    Article  ADS  Google Scholar 

  21. J.M. Caulfield, W. Lubczynski, F.L. Pratt, J. Singleton, D.Y.K. Ko, W. Hayes, M. Kurmoo, P. Day, J. Phys. Condens. Matter 6, 2911 (1994)

    Article  ADS  Google Scholar 

  22. J. Singleton, P.A. Goddard, A. Ardavan, N. Harrison, S.J. Blundell, J.A. Schlueter, A.M. Kini, Phys. Rev. Lett. 88, 037001 (2002)

    Article  ADS  Google Scholar 

  23. J. Singleton, Band Theory and Electronic Properties of Solids, (Oxford University Press, Oxford, 2001)

    Google Scholar 

  24. N.W. Ashcroft, N.D. Mermin, Solid State Physics, (Saunders, Philadelphia, 1976)

    Google Scholar 

  25. T. Mori, Bull. Chem. Soc. Jpn. 71, 2509 (1998); T. Mori, H. Mori, S. Tanaka, Bull. Chem. Soc. Jpn. 72, 179 (1999); T. Mori, Bull. Chem. Soc. Jpn. 72, 2011 (1999)

    Article  Google Scholar 

  26. T. Ishiguo, K. Yamaji, G. Saito, Organic Superconductors, (Springer, Berlin Heidelberg New York, 1998)

    Google Scholar 

  27. N. Harrison, J. Caulfield, J. Singleton, P.H.P. Reinders, F. Herlach, W. Hayes, M. Kurmoo, P. Day, J. Phys. Condens. Matter 8, 5415 (1996)

    Article  ADS  Google Scholar 

  28. M.V. Kartsovnik, V.N. Laukhin, S.I. Pesotskii, I.F. Schegolev, V.M. Yakovenko, J. Phys. I (Paris) 2, 89 (1990)

    Google Scholar 

  29. J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors, (Springer, Berlin Heidelberg New York, 1996)

    Google Scholar 

  30. N. Harrison, E. Rzepniewski, J. Singleton, P.J. Gee, M.M. Honold, P. Day, M. Kurmoo, J. Phys. Condens. Matter 11, 7227 (1999)

    Article  ADS  Google Scholar 

  31. D. Beckmann, S. Wanka, J. Wosnitza, J.A. Schlueter, J.M. Williams, P.G. Nixon, R.W. Winter, G.L. Gard, J. Ren, M.H. Whangbo, Eur. Phys. J. B 1, 295 (1998); J. Wosnitza, S. Wanka, J.S. Qualls, J.S. Brooks, C.H. Mielke, N. Harrison, J.A. Schleuter, J.M. Williams, P.G. Nixon, R.W. Winter, G.L. Gard, Synth. Met. 103, 2000 (1999); F. Zuo, X. Su, P. Zhang, J.S. Brooks, J. Wosnitza, J.A. Schlueter, J.M. Williams, P.G. Nixon, R.W. Winter, G.L. Gard, Phys. Rev. B 60, 6296 (1999); J. Wosnitza, Physica B 246–247, 104 (1998)

    Article  ADS  Google Scholar 

  32. M. Doporto, J. Singleton, F.L. Pratt, J. Caulfield, W. Hayes, J.A.A.J. Perenboom, I. Deckers, G. Pitsi, M. Kurmoo, P. Day, Phys. Rev. B 49, 3934 (1994)

    Article  ADS  Google Scholar 

  33. A.A. House, N. Harrison, S.J. Blundell, I. Deckers, J. Singleton, F. Herlach, W. Hayes, J.A.A.J. Perenboom, M. Kurmoo, P. Day, Phys. Rev. B 53, 9127 (1996)

    Article  ADS  Google Scholar 

  34. C.H. Mielke, J. Singleton, M.-S. Nam, N. Harrison, C.C. Agosta, B. Fravel, L.K. Montgomery, J. Phys. Condens. Matter 13, 8325 (2001)

    Article  ADS  Google Scholar 

  35. E. Demiralp, W.A. Goddard III, Phys. Rev. B 56, 11907 (1997)

    Article  ADS  Google Scholar 

  36. J. Liu, J. Schmalian, N. Trivedi, Phys. Rev. Lett. 94, 127003 (2005)

    Article  ADS  Google Scholar 

  37. H.O. Jeschke, G. Kotliar, Phys. Rev. B. 71, 085103 (2005)

    Article  ADS  Google Scholar 

  38. D.G. Clarke, S.P. Strong, Adv. Phys. 46, 545 (1997); J. Phys. Condens. Matter 8, 5415 (1996)

    Article  ADS  Google Scholar 

  39. L.B. Ioffe, A.J. Millis, Science 285, 1241 (2000)

    Article  Google Scholar 

  40. C. Bergemann, S.R. Julian, A.P. Mackenzie, S. NishiZaki, Y. Maeno, Phys. Rev. Lett. 84, 2662 (2000)

    Article  ADS  Google Scholar 

  41. C.N.R. Rao, J. Mater. Chem. 9, 1 (1999)

    Article  Google Scholar 

  42. R.H. McKenzie, P. Moses, Phys. Rev. Lett. 81, 4492 (1998); Phys. Rev. B 60, 11241 (1999)

    Article  ADS  Google Scholar 

  43. This is roughly equivalent to the Mott-Ioffe-Regel criterion [44]; see e.g. [42] or Section 7.2 of [38]

    Google Scholar 

  44. N.F. Mott, E.H. Davies, Electronic Properties of Non-Crystalline Materials, (Taylor and Francis, London, 1975); A.F. Ioffe, A.R. Regel, Prog. Semicond. 4, 237 (1960)

    Google Scholar 

  45. P.W. Anderson, The Theory of Superconductivity in the HighT c Cuprates, (Princeton University Press, Princeton, 1997), p. 50

    Google Scholar 

  46. K. Kuroki, H. Aoki, Phys. Rev. B 60, 3060 (1999)

    Article  ADS  Google Scholar 

  47. R. Louati, S. Charfi-Kaddour, A. Ben Ali, R. Bennaceau, M. Heritier, Synth. Met. 103, 1857 (1999)

    Article  Google Scholar 

  48. M.S. Nam, S.J. Blundell, A. Ardavan, J.A. Symington, J. Singleton, J. Phys. Condens. Matter 13, 2271 (2001)

    Article  ADS  Google Scholar 

  49. J.M. Schrama, J. Singleton, R.S. Edwards, A. Ardavan, E. Rzepniewski, R. Harris, P. Goy, M. Gross, J. Schlueter, M. Kurmoo, P. Day, J. Phys. Condens. Matter 13, 2235 (2001)

    Article  ADS  Google Scholar 

  50. J. Singleton, R.S. Edwards in High Magnetic Fields, Science and Technology, ed. by F. Herlach, N. Miura. Theory and Experiment, vol 2 (World Scientific, Singapore, 2003), p. 85

    Google Scholar 

  51. P.A. Goddard, S.J. Blundell, J. Singleton, R.D. McDonald, A. Ardavan, A. Narduzzo, J.A. Schlueter, A.M. Kini, T. Sasaki, Phys. Rev. B 69, 174509 (2004)

    Article  ADS  Google Scholar 

  52. J. Singleton, P.A. Goddard, A. Ardavan, S.J. Blundell, A. Coldea, J. Schlueter, Phys. Rev. Lett. submitted, arXiv:cond-mat/0610318

    Google Scholar 

  53. The existence of such a modulation might suggest that a beating between “neck and belly” frequencies would be observed in the dHvA effect [14]; however, in careful low-field studies [54], no such beating has been observed. We shall see that this is because the typical cyclotron energy is rather greater than t , even at the lowest fields used.

    Google Scholar 

  54. T. Sasaki, W. Biberacher, K. Neumaier, W. Hehn, K. Andres, T. Fukase, Phys. Rev. B 57, 10889 (1998)

    Article  ADS  Google Scholar 

  55. When viewed in the extended zone scheme, the quasi-two-dimensional section of this type of Fermi surface (blue in Fig. ??(c)) is often known as a “coke-bottle” Fermi surface (USA) or a “Cumberland sausage” Fermi surface (Europe). (The latter is a hand-made sausage with weak but approximately regular corrugations.)

    Google Scholar 

  56. This simple discussion deals with an interlayertransfer integral is directed along the normal to the layers. However, most real charge-transfer salts have rather lower symmetry, and it is imperative that the correct direction of the interlayer transfer integral be taken into account; see Ref. [51]

    Google Scholar 

  57. T. Osada, S. Kagoshima, N. Miura, Phys. Rev. Lett. 77, 5261 (1996); N. Hanasaki, S. Kagoshima, T. Hasegawa, T. Osada, N. Miura, Phys. Rev. B 57, 1336 (1998); ibid. 60, 11210 (1999)

    Article  ADS  Google Scholar 

  58. V.G. Peschansky, M.V. Kartsovnik, Phys. Rev. B 60, 11207 (1999); I.J. Lee, M.J. Naughton, Phys. Rev. B 57, 7423 (1998)

    Article  ADS  Google Scholar 

  59. E. Ohmichi, H. Ito, T. Ishiguro, T. Komatsu, G. Saito, J. Phys. Soc. Jpn. 66, 310 (1997)

    Article  ADS  Google Scholar 

  60. V.M. Gvozdikov, J. Wosnitza, Low Temp. Phys. 32, 109 (2006)

    Article  ADS  Google Scholar 

  61. M.S. Nam, S.J. Blundell, A.Ardavan, J. Symington, J. Singleton, J. Phys. Condens. Matter 13, 2271 (2001)

    Article  ADS  Google Scholar 

  62. N.E. Hussey, J. Phys. Chem. Solids 67, 227 (2006)

    Article  ADS  Google Scholar 

  63. S.J. Blundell, J. Singleton, J. Phys. I 6, 1837 (1996)

    Article  Google Scholar 

  64. A. Bangura, A. Ardavan, S.J. Blundell, J. Singleton, P.A. Goddard, J. Schlueter, Phys. Rev. Lett., submitted (2006).

    Google Scholar 

  65. N. Harrison, C.H. Mielke, J. Singleton, J.S. Brooks, M. Tokumoto, J. Phys. Condens. Matter 13, L389 (2001)

    Article  ADS  Google Scholar 

  66. C.C. Agosta, T. Coffey, Z. Bayindir, I. Mihut, C. Martin, M. Tokumoto, Int. J. Mod. Phys. B 30, 3227

    Google Scholar 

  67. A.E. Kovalev, T. Ishiguro, T. Kondo, G. Saito, Phys. Rev. B 62, 103 (2000)

    Article  ADS  Google Scholar 

  68. D. Shoenberg, Magnetic Oscillations in Metals, (Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  69. N. Harrison, R. Bogaerts, P. Reinders, J. Singleton, S.J. Blundell, F. Herlach, Phys. Rev. B 54, 9977 (1996)

    Article  ADS  Google Scholar 

  70. S. Hill, Phys. Rev. B 55, 4931 (1997); ibid. 62, 8699 (2000)

    Article  ADS  Google Scholar 

  71. N. Harrison, J. Singleton, J. Phys. Condens. Matter 13, L463 (2001)

    Article  ADS  Google Scholar 

  72. J. Singleton, in Encyclopedia of Condensed Matter Physics, vol. 1, ed. by F. Bassani, G.L. Liedl, P. Wyder, (Elsevier, Oxford, 2005), p. 343

    Chapter  Google Scholar 

  73. J. Singleton, C.H. Mielke, W. Hayes, J.A. Schlueter, J. Phys. Condens. Matter 15(12), L203 (2003)

    Article  ADS  Google Scholar 

  74. I. Mihut, C.C. Agosta, C. Martin, C.H. Mielke, T. Coffey, M. Tokumoto, M. Kurmoo, J.A. Schlueter, P.A. Goddard, N. Harrison, Phys. Rev. B 73, 125118 (2006)

    Article  ADS  Google Scholar 

  75. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1994)

    Google Scholar 

  76. G. Grüner, Density Waves in Solids, Frontiers in Physics 89, (Addison-Wesley, Reading, 1996)

    Google Scholar 

  77. N. Harrison, L. Balicas, J.S. Brooks, M. Tokumoto, Phys. Rev. B 62, 14212 (2000)

    Article  ADS  Google Scholar 

  78. D. Andres, M.V. Kartsovnik, P.D. Grigoriev, W. Biberacher, H. Muller, Phys. Rev. B 68, 201101 (2003)

    Article  ADS  Google Scholar 

  79. N. Harrison, J. Singleton, A. Bangura, A. Ardavan, P.A. Goddard, R.D. McDonald, L.K. Montgomery, Phys. Rev. B 69, 165103 (2004)

    Article  ADS  Google Scholar 

  80. M. Matos, G. Bonfait, R.T. Henriques, M. Almeida, Phys. Rev. B 54, 15307 (1996)

    Article  ADS  Google Scholar 

  81. D. Graf, J.S. Brooks, E.S. Choi, S. Uji, J.C. Dias, M. Almeida, M. Matos, Phys. Rev. B 69, 125113 (2004)

    Article  ADS  Google Scholar 

  82. R. McDonald, N. Harrison, J. Singleton, A. Bangura, P.A. Goddard, A.P. Ramirez, X. Chi, Phys. Rev. Lett. 94, 106404 (2005)

    Article  ADS  Google Scholar 

  83. R. McDonald, N. Harrison, L. Balicas, K.H. Kim, J. Singleton, X. Chi, Phys. Rev. Lett. 93, 076405 (2004)

    Article  ADS  Google Scholar 

  84. R.D. McDonald, N. Harrison, P. Goddard, J. Singleton, X. Chi, cond-mat 0408408 (2004)

    Google Scholar 

  85. R.T. Henriques, J. Phys. C 17, 5197 (1984)

    Article  ADS  Google Scholar 

  86. D. Graf, E.S. Choi, J.S. Brooks, M. Matos, R.T. Henriques, M. Almeida, Phys. Rev. Lett. 93, 076406 (2004)

    Article  ADS  Google Scholar 

  87. P.M. Chaikin, J. Phys. I (France) 6, 1875 (1996)

    Article  Google Scholar 

  88. A.G. Lebed, JETP Lett. 78, 138 (2003)

    Article  ADS  Google Scholar 

  89. R.D. McDonald, N. Harrison, preprint (2006)

    Google Scholar 

  90. R.H. McKenzie, cond-mat/970635

    Google Scholar 

  91. P. Day, Phil. Trans. R. Soc. London 357, 3163 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singleton, J., McDonald, R.D., Harrison, N. (2008). High-field Magnetoresistive Effects in Reduced-Dimensionality Organic Metals and Superconductors. In: Lebed, A. (eds) The Physics of Organic Superconductors and Conductors. Springer Series in Materials Science, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76672-8_9

Download citation

Publish with us

Policies and ethics