Skip to main content

Theory of the Fulde–Ferrell–Larkin–Ovchinnikov State and Application to Quasi-Low-dimensional Organic Superconductors

  • Chapter
The Physics of Organic Superconductors and Conductors

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 110))

The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO or LOFF) state is a superconducting state of Cooper pairs with finite center-of-mass momenta that is stabilized by the Zeeman energy at high magnetic fields in clean type II superconductors. In this article, we review recent developments of the theory of the FFLO state in quasi-low-dimensional (QLD) systems, and its application to QLD organic superconductors. For the FFLO state to occur, the orbital pair-breaking effect needs to be sufficiently weak that superconductivity survives up to the Pauli paramagnetic limit. This condition is satisfied in layered superconductors with small interlayer electron hopping energy when the magnetic field is precisely aligned parallel to the most conductive layers. The FFLO state is favored in QLD systems because of the Fermi surface effect, analogous to the nesting effects for charge density waves (CDW) and spin density waves (SDW), arising in the FFLO state due to the finite center-of-mass momenta of the Cooper pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)

    Article  ADS  Google Scholar 

  2. A.I. Larkin, Yu.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964); [translation: Sov. Phys. JETP 20, 762 (1965)]

    Google Scholar 

  3. For review, see R. Casalbuoni, G. Narduli, Rev. Mod. Phys. 76, 263 (2004); Y. Matsuda, H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007)

    Article  ADS  Google Scholar 

  4. L.W. Gruenberg, L. Gunther, Phys. Rev. Lett. 16, 996 (1966)

    Article  ADS  Google Scholar 

  5. H. Shimahara, J. Phys. Soc. Jpn. 67, 736 (1998)

    Article  ADS  Google Scholar 

  6. H. Shimahara, Czech. J. Phys. 46(Suppl. 2), 561 (1996), (Proceedings of the 21st International Conference on Low Temperature Physics, Prague, August 8–14, 1996)

    Article  ADS  Google Scholar 

  7. C. Mora, R. Combescot, Europhys. Lett. 66, 833 (2004); R. Combescot, G. Tonini, Phys. Rev. B 72, 094513 (2005)

    Article  ADS  Google Scholar 

  8. C. Mora, R. Combescot, Phys. Rev. B 71, 214504 (2005)

    Article  ADS  Google Scholar 

  9. H. Shimahara, D. Rainer, J. Phys. Soc. Jpn. 66, 3591 (1997)

    Article  ADS  Google Scholar 

  10. U. Klein, D. Rainer, H. Shimahara, J. Low Temp. Phys. 118, 91 (2000)

    Article  Google Scholar 

  11. U. Klein, Phys. Rev. B 69, 134518 (2004)

    Article  ADS  Google Scholar 

  12. S. Takada, Prog. Theor. Phys. 43, 27 (1970); see also S. Takada, T. Izuyama, Prog. Theor. Phys. 41, 635 (1969)

    Article  ADS  Google Scholar 

  13. K. Gloos, R. Modler, H. Schimanski, C.D. Bredl, C. Geibel, F. Steglich, A.I. Buzdin, N. Sato, T. Komatsubara, Phys. Rev. Lett. 70, 501 (1993)

    Article  ADS  Google Scholar 

  14. G. Yin, K. Maki, Phys. Rev. B 48, 650 (1993)

    Article  ADS  Google Scholar 

  15. H. Burkhardt, D. Rainer, Ann. Physik 3, 181 (1994)

    Article  ADS  Google Scholar 

  16. H. Shimahara, Phys. Rev. B 50, 12760 (1994)

    Article  ADS  Google Scholar 

  17. M. Tachiki, S. Takahashi, P. Gegenwart, M. Weiden, M. Lang, C. Geibel, F. Steglich, R. Modler, C. Paulsen, Y. Ōnuki, Z. Phys. B 100, 369 (1996)

    Article  ADS  Google Scholar 

  18. S. Matsuo, S. Higashitani, Y. Nagato, K. Nagai, J. Phys. Soc. Jpn. 67, 280 (1998)

    Article  ADS  Google Scholar 

  19. K. Machida, H. Nakanishi, Phys. Rev. B 30, 122 (1984)

    Article  ADS  Google Scholar 

  20. Y. Suzumura, K. Ishino, Prog. Theor. Phys. 70, 654 (1983)

    Article  ADS  Google Scholar 

  21. A.I. Buzdin, V.V. Tugushev, Zh. Eksp. Teor. Fiz. 85, 73 (1983); [Sov. Phys. JETP 58, 428 (1983)]

    Google Scholar 

  22. L.N. Bulaevskii, Zh. Eksp. Teor. Fiz. 65, 1278 (1973); [translation: Sov. Phys. JETP 38, 634 (1974)]

    ADS  Google Scholar 

  23. K. Aoi, W. Dieterich, P. Fulde, Z. Physik 267, 223 (1974)

    Article  ADS  Google Scholar 

  24. H. Shimahara, J. Phys. Soc. Jpn. 66, 541 (1997)

    Article  ADS  Google Scholar 

  25. H. Shimahara, J. Phys. Soc. Jpn. 68, 3069 (1999)

    Article  ADS  Google Scholar 

  26. H. Shimahara, K. Moriwake, J. Phys. Soc. Jpn. 71, 1234 (2002); H. Shimahara, S. Hata, Phys. Rev. B 62, 14541 (2000)

    Article  ADS  Google Scholar 

  27. K. Maki, H. Won, Czech. J. Phys. 46, 1035 (1996)

    Article  ADS  Google Scholar 

  28. K. Yang, S.L. Sondhi, Phys. Rev. B 57, 8566 (1998)

    Article  ADS  Google Scholar 

  29. A.G. Lebed, Phys. Rev. B 59 R721 (1999)

    Article  ADS  Google Scholar 

  30. A.S. Alexandrov, V.N. Zavaritsky, W.Y. Liang, P.L. Nevsky, Phys. Rev. Lett. 76, 983 (1996); Y.N. Ovchinnikov, V.Z. Kresin, Phys. Rev. B 54, 1251 (1996); A.A. Abrikosov, Phys. Rev. B 56, 5112 (1997); V.B. Geshkenbein, L.B. Ioffe, A.J. Millis, Phys. Rev. Lett. 80, 5778 (1998)

    Article  ADS  Google Scholar 

  31. A.G. Lebed, Pis’ma Zh. Eksp. Teor. Fiz. 44, 89 (1986); [JETP Lett. 44, 114 (1986)]

    Google Scholar 

  32. N. Dupuis, G. Montambaux, C.A.R. Sá de Melo, Phys. Rev. Lett. 70, 2613 (1993)

    Article  ADS  Google Scholar 

  33. A.G. Lebed, K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998)

    Article  ADS  Google Scholar 

  34. A.I. Buzdin, J.P. Brison, Europhys. Lett. 35, 707 (1996)

    Article  ADS  Google Scholar 

  35. N. Dupuis, Phys. Rev. B 51, 9074 (1995); N. Dupuis, G. Montambaux, Phys. Rev. B 49, 8993 (1994)

    Article  ADS  Google Scholar 

  36. I.J. Lee, M.J. Naughton, G.M. Danner, P.M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)

    Article  ADS  Google Scholar 

  37. T. Ishiguro, J. Phys. IV France 10, Pr3-139 (2000)

    Article  Google Scholar 

  38. M.-S. Nam, J.A. Symington, J. Singleton, S.J. Blundell, A. Ardavan, J.A.A.J. Perenboom, M. Kurmoo, P. Day, J. Phys. Condens. Matter 11, L477 (1999)

    Article  ADS  Google Scholar 

  39. J. Singleton, J.A. Symington, M.-S. Nam, A. Ardavan, M. Kurmoo, P. Day, J. Phys. Condens. Matter 12, L641 (2000); J.A. Symington, J. Singleton, M.-S. Nam, A. Ardavan, M. Kurmoo, P. Day, Physica B 294–295, 418 (2001)

    Article  ADS  Google Scholar 

  40. E. Ohmichi, T. Ishiguro, J. Yamada, H. Anzai, T. Osada, Synth. Met. 133–134, 245 (2003)

    Article  Google Scholar 

  41. E. Ohmichi, T. Ishiguro, T. Sakon, T. Sasaki, M. Motokawa, R.B. Lyubovskii, R.N. Lyubovskaya, J. Supercond. 12, 505 (1999)

    Article  Google Scholar 

  42. S. Manalo, U. Klein, J. Phys. Condens. Matter 12, L471 (2000)

    Article  ADS  Google Scholar 

  43. S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, H. Kobayashi, Nature 410, 908 (2001)

    Article  ADS  Google Scholar 

  44. L. Balicas, J.S. Brooks, K. Storr, S. Uji, M. Tokumoto, H. Tanaka, H. Kobayashi, A. Kobayashi, V. Barzykin, L.P. Gor’kov, Phys. Rev. Lett. 87, 067002 (2001)

    Article  ADS  Google Scholar 

  45. O. Cépas, R.H. McKenzie, J. Merino, Phys. Rev. B 65, 100502(R) (2002)

    Article  Google Scholar 

  46. V. Jaccarino, M. Peter, Phys. Rev. Lett. 9, 290 (1962)

    Article  ADS  Google Scholar 

  47. O. Fisher, Helv. Phys. Acta 45, 331 (1972)

    Google Scholar 

  48. M.A. Tanatar, T. Ishiguro, H. Tanaka, H. Kobayashi, Phys. Rev. B 66, 134503 (2002)

    Article  ADS  Google Scholar 

  49. H. Shimahara, J. Phys. Soc. Jpn. 71, 1644 (2002)

    Article  ADS  Google Scholar 

  50. M. Houzet, A. Buzdin, L. Bulaevskii, M. Maley, Phys. Rev. Lett. 88, 227001 (2002)

    Article  ADS  Google Scholar 

  51. H. Shimahara, Phys. Rev. B 62, 3524 (2000)

    Article  ADS  Google Scholar 

  52. H. Shimahara, J. Phys. Soc. Jpn. 69, 1966 (2000)

    Article  ADS  Google Scholar 

  53. H. Shimahara, M. Kohmoto, Phys. Rev. B 65, 174502 (2002)

    Article  ADS  Google Scholar 

  54. S. Uji, T. Terashima, C. Terakura, T. Yakabe, Y. Terai, S. Yasuzuka, Y. Imanaka, M. Tokumoto, A. Kobayashi, F. Sakai, H. Tanaka, H. Kobayashi, L. Balicas, J.S. Brooks, J. Phys. Soc. Jpn. 72, 369 (2003)

    Article  ADS  Google Scholar 

  55. T. Konoike, S. Uji, T. Terashima, M. Nishimura, S. Yasuzuka, K. Enomoto, H. Fujiwara B. Zhang, H. Kobayashi, Phys. Rev. B 70, 094514 (2004)

    Article  ADS  Google Scholar 

  56. Y. Suginishi, H. Shimahara, Phys. Rev. B 74, 024518 (2006); Phys. Rev. B 75, 099902(E) (2007)

    Article  ADS  Google Scholar 

  57. H. Shimahara, J. Phys. Soc. Jpn. 71, 713 (2002)

    Article  ADS  Google Scholar 

  58. H. Shimahara, J. Phys. Soc. Jpn. 73, 2635 (2004)

    Article  MATH  ADS  Google Scholar 

  59. C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, P. Monthoux, J. Phys. Condens. Matter 13, L337 (2001)

    Article  ADS  Google Scholar 

  60. H. Shishido, R. Settai, D. Aoki, S. Ikeda, H. Nakawaki, N. Nakamura, T. Iizuka, Y. Inada, K. Sugiyama, T. Takeuchi, K. Kindo, T.C. Kobayashi, Y. Haga, H. Harima, Y. Aoki, T. Namiki, H. Sato, Y. Ōnuki, J. Phys. Soc. Jpn. 71, 162 (2002)

    Article  ADS  Google Scholar 

  61. K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, Y. Onuki, Phys. Rev. Lett. 87, 057002 (2001)

    Article  ADS  Google Scholar 

  62. T.P. Murphy, Donavan Hall, E.C. Palm, S.W. Tozer, C. Petrovic, Z. Fisk, R.G. Goodrich, P.G. Pagliuso, J.L. Sarrao, J.D. Thompson, Phys. Rev. B 65, 100514(R) (2002)

    Article  ADS  Google Scholar 

  63. A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003)

    Article  ADS  Google Scholar 

  64. H.A. Radovan, N.A. Fortune, T.P. Murphy, S.T. Hannahs, E.C. Palm, S.W. Tozer, D. Hall, Nature 425, 51 (2003)

    Article  ADS  Google Scholar 

  65. H. Adachi, R. Ikeda, Phys. Rev. B 68, 184510 (2003)

    Article  ADS  Google Scholar 

  66. H. Won, K. Maki, S. Haas, N. Oeschler, F. Weickert, P. Gegenwart, Phys. Rev. B 69, 180504(R) (2004)

    Article  ADS  Google Scholar 

  67. T. Watanabe, Y. Kasahara, K. Izawa, T. Sakakibara, Y. Matsuda, C.J. van der Beek, T. Hanaguri, H. Shishido, R. Settai, Y. Onuki, Phys. Rev. B 70, 020506 (2004)

    Article  ADS  Google Scholar 

  68. K. Kakuyanagi, M. Saitoh, K. Kumagai, S. Takashima, M. Nohara, H. Takagi, Y. Matsuda, Phys. Rev. Lett. 94, 047602 (2005)

    Article  ADS  Google Scholar 

  69. C. Capan, A. Bianchi, R. Movshovich, A.D. Christianson, A. Malinowski, M.F. Hundley, A. Lacerda, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. B 70, 134513 (2004)

    Article  ADS  Google Scholar 

  70. C. Martin, C.C. Agosta, S.W. Tozer, H.A. Radovan, E.C. Palm, T.P. Murphy, J.L. Sarrao, Phys. Rev. B 71, 020503(R) (2005)

    ADS  Google Scholar 

  71. H. Shimahara, J. Phys. Soc. Jpn. 67, 1872 (1998); Physica B 259–261, 492 (1999)

    Article  ADS  Google Scholar 

  72. Y. Ohashi, J. Phys. Soc. Jpn. 71, 2625 (2002)

    Article  ADS  Google Scholar 

  73. K. Yang, D.F. Agterberg, Phys. Rev. Lett. 84, 4970 (2000)

    Article  ADS  Google Scholar 

  74. L. Bulaevskii, A. Buzdin, M. Maley, Phys. Rev. Lett. 90, 067003 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shimahara, H. (2008). Theory of the Fulde–Ferrell–Larkin–Ovchinnikov State and Application to Quasi-Low-dimensional Organic Superconductors. In: Lebed, A. (eds) The Physics of Organic Superconductors and Conductors. Springer Series in Materials Science, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76672-8_25

Download citation

Publish with us

Policies and ethics