Skip to main content

Transport of Sputtered Particles Through the Gas Phase

  • Chapter
Reactive Sputter Deposition

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 109))

Knowledge of the transport of sputtered particles through the gas phase is not only a fundamental research topic, but also of main interest to know the properties of the arriving metal flux at the substrate or chamber walls as a function of the deposition geometry and deposition conditions. Characterisation or modelling of this metal flux is, e.g. of interest when a high thickness uniformity is needed [1], when complex substrates are to be deposited [2], or when the thin film composition has to be controlled [3]. However, not only the amount of arriving metallic particles has to be controlled, but also their direction and impact energy are influencing the final properties of the deposited thin films. Although some attempts have been done, characterisation of the incoming direction [4] or the energy [5] of metal particles experimentally is difficult to carry out.

A better attempt is to simulate the transport of the sputtered particles, and to verify the simulation code by the experimental much more accessible deposition profile [6].

An overview of the simulation of the transport of the sputtered particles through the gas phase is given in this article.

Section 6.2 describes the place wherefrom the sputtered particles leave the target. Section 6.3 discusses the different ways to describe the initial energy and direction of the sputtered particles, when leaving the target. In Sect. 6.4, the mean free path, and thus the distance to a collision with the background gas, is discussed. Also the collision and the interaction potential needed to describe the collision are treated in Sect. 6.4. Section 6.5 briefly discusses the possible ways to include the effect of gas rarefaction. Finally, in Sect. 6.6 a concrete simulation model is described and some typical results are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Car, N. Radic, Thin Solid Films 293, 78 (1997)

    Article  ADS  CAS  Google Scholar 

  2. B.W. Tao, J.J. Chen, X.Z. Liu, Y.R. Li, R. Fromknecht, J. Geerk, Thin Solid Films 485, 47 (2005)

    Article  ADS  CAS  Google Scholar 

  3. G.H. Gilmer, H. Huang, C. Roland, Comput. Mater. Sci. 12, 354 (1998)

    Article  CAS  Google Scholar 

  4. H. Matsui, H. Toyoda, H. Sugai, J. Vac. Sci. Technol. A 23(4), 671 (2005)

    Article  ADS  CAS  Google Scholar 

  5. C. Eisenmenger-Sittner, R. Beyerknecht, A. Bergauer, W. Bauer, G. Betz, J. Vac. Sci. Technol. A 13(5), 2435 (1995)

    Article  ADS  CAS  Google Scholar 

  6. S. Mahieu, G. Buyle, D. Depla, S. Heirwegh, P. Ghekiere, R. De Gryse, Nucl. Instrum. Meth. Phys. Res. B 243, 313 (2006)

    Article  ADS  CAS  Google Scholar 

  7. A. Bogaerts, Reactive Sputter Deposition (Springer, Berlin Heidelberg New York, in press)

    Google Scholar 

  8. W. Westwood, Sputter Deposition, (AVS, New York, 2003), ISBN: 0 7354 0105 5

    Google Scholar 

  9. T. Motohiro, J. Vac. Sci. Technol. A 4(2), 189 (1986)

    Article  ADS  CAS  Google Scholar 

  10. T. Motohiro, Y. Taga, Surf. Sci. Lett. 134, L494 (1983)

    Article  CAS  Google Scholar 

  11. W. Bauer, G. Betz, J. Vac. Sci. Technol. A 12(6), 3157 (1994)

    Article  ADS  CAS  Google Scholar 

  12. A. Kersch, W. Morokoff, Chr. Werner, J. Appl. Phys. 75(4), 2278 (1994)

    Article  ADS  CAS  Google Scholar 

  13. W. Bauer, G. Betz, H. Bangert, A. Bergauer, C. Eisenmenger-Sittner, Thin Solid Films 281–282, 68 (1996)

    Article  Google Scholar 

  14. V.V. Serikov, K. Nanbu, J. Vac. Sci. Technol. A 14(6), 3108 (1996)

    Article  ADS  CAS  Google Scholar 

  15. A. Malaurie, A. Bessaudou, Thin Solid Films 286, 305 (1996)

    Article  ADS  CAS  Google Scholar 

  16. K. Macàk, P. Macàk, U. Helmersson, Comput. Phys. Commun. 120, 238 (1999)

    Article  ADS  Google Scholar 

  17. G. Buyle, D. Depla, K. Eufinger, J. Haemers, R. De Gryse, W. De Bosscher, J. Vac. Sci. Technol. A 21, 1218 (2003)

    Article  ADS  CAS  Google Scholar 

  18. J.E. Miranda, M.J. Goeckner, J. Goree, T.E. Sheridan, J. Vac. Sci. Technol. A 8(3), 1627 (1990)

    Article  ADS  CAS  Google Scholar 

  19. N. Baguer, A. Bogaerts, J. Appl. Phys. 98, 033303 (2005)

    Article  ADS  CAS  Google Scholar 

  20. T. Yagisawa, T. Makabe, J. Vac. Sci. Technol. A 24(4), 908 (2006)

    Article  CAS  Google Scholar 

  21. U.H. Kwon, S.H. Choi, Y.H. Park, W.J. Lee, Thin Solid Films 475, 17 (2005)

    Article  ADS  CAS  Google Scholar 

  22. T.E. Sheridan, M.J. Goeckner, J. Goree, J. Vac. Sci. Technol. A 8(1), 30 (1990)

    Article  ADS  CAS  Google Scholar 

  23. M.J. Goeckner, J.A. Goree, T.E. Sheridan, IEEE Trans. Plasma Sci. 19(2), 301 (1991)

    Article  ADS  Google Scholar 

  24. Q.H. Fan, J.J. Gracio, L.Q. Zhou, J. Appl. Phys. 95(11), 6017 (2004)

    Article  CAS  Google Scholar 

  25. O. Yamazaki, K. Iyanagi, S. Takagi, K. Nanbu, Jpn. J. Appl. Phys. 41, 1230 (2002)

    Article  ADS  CAS  Google Scholar 

  26. A.E. Wendt, M.A. Lieberman, H. Meuth, J. Vac. Sci. Technol. A 6, 1827 (1988)

    Article  ADS  CAS  Google Scholar 

  27. G.C.B. Clarke, P.J. Kelly, J.W. Bradley, Surf. Coat. Technol. 200, 1341 (2005)

    Article  CAS  Google Scholar 

  28. P. Sigmund, Phys. Rev. 184(2), 383 (1969)

    Article  Google Scholar 

  29. M.W. Thompson, Vacuum 66, 99 (2002)

    Article  CAS  Google Scholar 

  30. P. Sigmund, Sputtering by particle bombardment I (Springer, Berlin Heidelberg New York, 1981) ISBN: 0 387 10521 2

    Google Scholar 

  31. G. Falcone, Surf. Sci. 187, 212 (1987)

    Article  ADS  CAS  Google Scholar 

  32. T. Kenmotsu, Y. Yamamura, T. Ono, T. Kawamura, J. Plasma Fus. Res. 80(5), 406 (2004)

    Article  ADS  CAS  Google Scholar 

  33. T. Ono, Y. Oaki, T. Kawamura, T. Kenmotsu, Y. Yamamura, J. Nucl. Mater. 337–339, 975 (2005)

    Article  CAS  Google Scholar 

  34. H.E. Roosendaal, U. Littmark, J.B. Sanders, Phys. Rev. B 26(9), 5261 (1982)

    Article  ADS  CAS  Google Scholar 

  35. J.B. Sanders, H.E. Roosendaal, Radiat. Eff. 24, 161 (1975)

    Article  Google Scholar 

  36. H.E. Roosendaal, J.B. Sanders, Radiat. Eff. 52, 137 (1980)

    Article  CAS  Google Scholar 

  37. A. Goehlich, D. Gillmann, H.F. Döbele, Nucl. Instrum. Meth. Phys. Res. B 179, 351 (2001)

    Article  ADS  CAS  Google Scholar 

  38. V.S. Chernysh, W. Eckstein, A.A. Haidarov, V.S. Kulikauskas, E.S. Mashkova, V.A. Molchanov, Nucl. Instrum. Meth. Phys. Res. B 164, 755 (2000)

    Article  ADS  Google Scholar 

  39. M. Stepanova, S.K. Dew, J. Vac. Sci. Technol. A 19(6), 2805 (2001)

    Article  ADS  CAS  Google Scholar 

  40. X.W. Zhou, H.N.G. Wadley, S. Sainathan, Nucl. Instrum. Meth. Phys. Res. B 234, 441 (2005)

    Article  ADS  CAS  Google Scholar 

  41. A. Goehlich, D. Gillmann, H.F. Döbele, Nucl. Instrum. Meth. Phys. Res. B 164–165, 834 (2000)

    Article  Google Scholar 

  42. M. Stepanova, S.K. Dew, Nucl. Instrum. Meth. Phys. Res. B 215, 357 (2004)

    Article  ADS  CAS  Google Scholar 

  43. A.M. Myers, J.R. Doyle, J.R. Abelson, J. Vac. Sci. Technol. A 9(3), 614 (1991)

    Article  ADS  CAS  Google Scholar 

  44. W. Möller, W. Eckstein, Nucl. Instrum. Meth. Phys. Res. B 2, 814 (1984)

    Article  ADS  Google Scholar 

  45. J. Biersack, L.G. Haggmark, Nucl. Instrum. Meth. Phys. Res. B 29, 461 (1987)

    Article  Google Scholar 

  46. Y. Yamamura, Nucl. Instrum. Meth. Phys. Res. B 28, 17 (1987)

    Article  ADS  Google Scholar 

  47. M.T. Robinson, I.M. Torrens, Phys. Rev. 9, 5008 (1974)

    Article  ADS  CAS  Google Scholar 

  48. D.E. Harisson, J. Appl. Phys. 52(3), 1499 (1981)

    Google Scholar 

  49. T. Moussel, W. Eckstein, H. Gnaser, Nucl. Instrum. Meth. Phys. Res. B 152, 36 (1999)

    Article  ADS  Google Scholar 

  50. Y. Yamamura, M. Ishida, J. Vac. Sci. Technol. A 13(1), 101 (1995)

    Article  ADS  CAS  Google Scholar 

  51. A.M. Myers, J.R. Doyle, J. Appl. Phys. 72(7), 3064 (1992)

    Article  Google Scholar 

  52. B. Chapman, Glow Discharge Processes, (Wiley, New York, ISBN: 0 471 07828 X)

    Google Scholar 

  53. R.E. Somekh, J. Vac. Sci. Technol. A 2(3), 1285 (1984)

    Article  ADS  CAS  Google Scholar 

  54. T. Smy, L. Tan, S.S. Winterton, S.K. Dew, M.J. Brett, J. Vac. Sci. Technol. A 15(6), 2847 (1997)

    Article  ADS  CAS  Google Scholar 

  55. S.S. Nathan, G.M. Rao, S. Mohan, J. Appl. Phys. 84(1), 564 (1998)

    Article  Google Scholar 

  56. G.M. Turner, I.S. Falconer, B.W. James, D.R. McKenzie, J. Appl. Phys 65(9), 3671 (1989)

    Article  ADS  Google Scholar 

  57. P.K. Petrov, V.A. Volpyas, R.A. Chakalov, Vacuum 52, 427 (1999)

    Article  CAS  Google Scholar 

  58. K.D. Vargheese, G.M. Rao, J. Appl. Phys. 87(10), 7544 (2000)

    Article  Google Scholar 

  59. E.W. McDaniel (ed.), Collision Phenomena in Ionized Gases, Wiley series in plasma physics (Wiley, New York, 1964)

    Google Scholar 

  60. R.S. Robinson, JVST A 16(2), 185 (1979)

    ADS  CAS  Google Scholar 

  61. K. Nanbu, J. Phys. Soc. Jpn. 59(12), 4331 (1990)

    Article  Google Scholar 

  62. W.J. Morokoff, A. Kersch, Comput. Math. Appl. 35(1/2), 155 (1998)

    Article  Google Scholar 

  63. J. Sielanko, Radiat. Eff. Lett. Sect. 86, 185 (1984)

    Article  CAS  Google Scholar 

  64. J. Lindhard, M. Scharff, H.E. Schiott, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 33(14), 1–42 (1963)

    Google Scholar 

  65. J. Lindhard, M. Scharff, Phys. Rev. 124(1), 128 (1961)

    Article  MathSciNet  Google Scholar 

  66. A. Bogaerts, Ph.D. Thesis, University of Antwerp, 1996

    Google Scholar 

  67. W. Eckstein in Computer Simulation of Ion-Solid Interactions, Springer Series in Materials Science 10, ISBN: 3-540-19057-0

    Google Scholar 

  68. O.B. Firsov, Sov. Phys. -JETP 6, 534 (1958)

    ADS  Google Scholar 

  69. J. Lindhard, M. Scharff, Phys. Rev. 124, 128 (1961)

    Article  ADS  CAS  Google Scholar 

  70. J.P. Biersack, J.F. Ziegler, Nucl. Instrum. Meth. 194(1–3), 93 (1982)

    ADS  CAS  Google Scholar 

  71. S.T. Nakagawa, Y. Yamamura, Radiat. Eff. 105, 239 (1988)

    Article  CAS  Google Scholar 

  72. V.A. Vol’pyas, E.K. Gol’man, Tech. Phys. 45(3), 298 (2000)

    Google Scholar 

  73. V. Abhilash, R. Balu, S. Balaji, S.S. Nathan, S. Mohan, Comput. Mater. Sci. 30, 523 (2004)

    Article  CAS  Google Scholar 

  74. A.A. Abrahamson, Phys. Rev. 178(1), 76 (1969)

    Article  Google Scholar 

  75. K.T. Kuwata, R.I. Erickson, J.R. Doyle, Nucl. Instrum Meth. Phys. Res. B 201, 566 (2003)

    Article  ADS  CAS  Google Scholar 

  76. D.W. Hoffman, J. Vac. Sci. Technol. A 3(3), 561 (1985)

    Article  ADS  CAS  Google Scholar 

  77. S.M. Rossnagel, J. Vac. Sci. Technol. A 6(1), 19 (1988)

    Article  ADS  CAS  Google Scholar 

  78. T.P. Drüsedau, J. Vac. Sci. Technol. A 20(2), 459 (2002)

    Article  ADS  CAS  Google Scholar 

  79. A. Palmero, H. Rudolph, F.H.P.M. Habraken, Thin Solid Films 515, 631 (2006)

    Article  ADS  CAS  Google Scholar 

  80. A. Palmero, H. Rudolph, F.H.P.M. Habraken, Appl. Phys. Lett. 89(21), 211501 (2006)

    Article  ADS  CAS  Google Scholar 

  81. T. Kobayashi, Appl. Surf. Sci. 169–170, 405 (2001)

    Article  Google Scholar 

  82. A. Kersch, W. Morokoff, Chr. Werner, J. Appl. Phys. 75(4), 2278 (1994)

    Article  ADS  CAS  Google Scholar 

  83. V.V. Serikov, K. Nanbu, J. Appl. Phys. 82(12), 5948 (1997)

    Article  ADS  CAS  Google Scholar 

  84. V.V. Serikov, S. Kawamoto, K. Nanbu, IEEE Trans. Plasma Sci. 27(5), 1389 (1999)

    Article  ADS  CAS  Google Scholar 

  85. G.M. Turner, J. Vac. Sci. Technol. A 13(4), 2161 (1995)

    Article  ADS  CAS  Google Scholar 

  86. I. Kolev, A. Bogaerts, IEEE Trans. Plasma Sci. 34(3), 886 (2006)

    Article  ADS  CAS  Google Scholar 

  87. S.D. Ekpe, S.K. Dew, J. Phys. D. Appl. 39, 1413 (2006)

    Article  CAS  Google Scholar 

  88. Chapter in this book: S. Ekpe and S. Dew

    Google Scholar 

  89. J. Musschoot, D. Depla, G. Buyle, J. Haemers, R. De Gryse, J. Phys. D Appl. Phys. 39(18), 3989 (2006)

    Article  CAS  Google Scholar 

  90. S. Mahieu, P. Ghekiere, D. Depla, R. De Gryse, O.I. Lebedev, G. Van Tendeloo, J. Cryst. Growth 290, 272 (2006)

    Article  ADS  CAS  Google Scholar 

  91. P. Ghekiere, S. Mahieu, R. De Grys, D. Depla, Thin Solid Films 515, 485 (2006)

    Article  ADS  CAS  Google Scholar 

  92. S. Mahieu, G. Buyle, P. Ghekiere, D. Depla, R. De Gryse, Thin Solid Films 515, 416 (2006)

    Article  ADS  CAS  Google Scholar 

  93. S. Mahieu, P. Ghekiere, D. Depla, R. De Gryse, Thin Solid Films 515(4), 1229 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahieu, S., Van Aeken, K., Depla, D. (2008). Transport of Sputtered Particles Through the Gas Phase. In: Depla, D., Mahieu, S. (eds) Reactive Sputter Deposition. Springer Series in Materials Science, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76664-3_6

Download citation

Publish with us

Policies and ethics