Skip to main content

Depositing Aluminium Oxide: A Case Study of Reactive Magnetron Sputtering

  • Chapter
Book cover Reactive Sputter Deposition

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 109))

The deposition of aluminium oxide from an aluminium target in DC mode is used in this chapter to illustrate the different aspects of the reactive magnetron sputter process. The choice for this combination of target material and reactive gas is given by the fact that the well-known hysteresis behaviour, described in the previous chapter, is clearly demonstrated for this combination. Two key aspects of the process are responsible for this behaviour. The strong difference in the molecular sputter yield and density for Al and Al2O3 results in a dramatic decrease of the deposition rate when the target is poisoned [1]. Similarly the ion induced secondary electron emission coefficient of aluminium changes strongly when reacting with oxygen to form aluminium oxide. Hence, the absolute discharge voltage drops in the order of 100V when the target becomes poisoned [2]. The previous chapter describes the “Berg” model for reactive magnetron sputtering. Several experimental trends can be explained using this model. The model includes most important processes accounting for its success. In short the model describes the gettering of the reactive gas by the target material which influences the reactive gas partial pressure. At low reactive gas flow, the reactive gas is almost completely gettered and hence the target condition remains metallic. When on increasing the reactive gas flow the maximum amount of reactive gas which can be gettered is reached, the reactive gas partial pressure increases and the target becomes completely poisoned. Depending on the experimental conditions this change from metallic to poisoned mode can occur abruptly. Although the model described in the previous chapter explains quite well the hysteresis behaviour some experiments described in this chapter are difficult to understand from this model. This finds its origin to the opinion of the authors in the description of the poisoning mechanism of the target. Indeed, in the “Berg” model, the reaction between the target material and the reactive gas is described by chemisorption. This is in first order a correct approach for the reaction on the substrate but is not a complete description for the target process. Indeed, during magnetron sputtering the target is bombarded by ions from the plasma, including reactive gas ions. The ion energy is defined by the discharge voltage and is in the order of 400 eV. Hence, the ions become implanted in the target at a depth in the order of a few nanometers. Two major conclusions can be drawn. First, when reacting with the target material, the reactive ion implantation results in a much thicker layer than modelled in the “Berg” model. Secondly, the reaction mechanism becomes more complicated and hence this could influence the description of the dynamics of reactive magnetron sputtering. These two major conclusions will be addressed in the final part of this chapter where an model is presented describing the reactive ion implantation in an analytical way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Koski, J. Hölsä, P. Juliet, Surf. Coat. Technol. 116–119, 716 (1999)

    Article  Google Scholar 

  2. D. Depla, R. De Gryse, Plasma Sources Sci. Technol. 10, 547 (2001)

    Article  ADS  CAS  Google Scholar 

  3. G. Buyle, PhD Thesis, Ghent University, 2005

    Google Scholar 

  4. T. Do, N.S. McIntyre, Surf. Sci. 440, 438 (1999)

    Article  ADS  CAS  Google Scholar 

  5. V. Zhukov, I. Popova, V. Fomenko, J.T. Yates Jr., Surf. Sci. 441, 240 (1999)

    Article  ADS  CAS  Google Scholar 

  6. V. Zhukov, I. Popova, J.T. Yates Jr., J. Vac. Sci. Technol. A 17, 1727 (1999)

    Article  ADS  CAS  Google Scholar 

  7. V. Zhukov, I. Popova, J.T. Yates Jr., Surf. Sci. 441, 251 (1999)

    Article  ADS  CAS  Google Scholar 

  8. W.H. Krueger, S.R. Pollack, Surf. Sci. 30, 263 (1972)

    Article  ADS  CAS  Google Scholar 

  9. B.C. Mitrovic, D.J. O’Connor, Surf. Sci. 405, 261 (1998)

    Article  ADS  CAS  Google Scholar 

  10. A. Arranz, C. Palacio, Surf. Sci. 355, 203 (1996)

    Article  ADS  CAS  Google Scholar 

  11. L. Pekker, Thin Solid Films 312, 341 (1998)

    Article  ADS  CAS  Google Scholar 

  12. E. Ershov, L. Pekker, Thin Solid Films 289, 140 (1996)

    Article  ADS  CAS  Google Scholar 

  13. D. Guttler, B. Abendroth, R. Grotzschel, W. Moller, D. Depla, Appl. Phys. Lett. 85, 6134 (2004)

    Article  ADS  CAS  Google Scholar 

  14. D. Depla, J. Haemers, R. De Gryse, Thin Solid Films 515, 468 (2006)

    Article  ADS  CAS  Google Scholar 

  15. S.S. Todorov, E.R. Fossum, Appl. Phys. Lett. 52, 48 (1988)

    Article  ADS  CAS  Google Scholar 

  16. R. Behrish (ed.), Sputtering by Particle Bombardment II, (Springer, Berlin Heidelberg New York, 1981)

    Google Scholar 

  17. D. Depla, R. De Gryse, J. Vac. Sci. Technol, A 20, 521 (2002)

    Article  ADS  CAS  Google Scholar 

  18. P.H. Dawson, Surf. Sci. 57, 229 (1976)

    Article  ADS  CAS  Google Scholar 

  19. E. Taglauer, W. Heiland, U. Beitat, Surf. Sci. 89, 710 (1979)

    Article  ADS  CAS  Google Scholar 

  20. The Stopping and Range of Ions in Matter (SRIM) can be downloaded from www.srim.org

  21. D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, R. De Gryse, J. Appl. Phys. 101, 013301/1 (2007)

    Google Scholar 

  22. D. Depla, H. Tomaszewski, G. Buyle, R. De Gryse, Surf. Coat. Technol. 201, 848 (2006)

    Article  CAS  Google Scholar 

  23. S. Mahieu, D. Depla, Appl. Phys. Lett. 90, 121117/1 (2007)

    Google Scholar 

  24. J.M. Ngaruiya, O. Kappertz, S.H. Mohamed, M. Wuttig, Appl. Phys. Lett. 85, 748 (2004)

    Article  ADS  CAS  Google Scholar 

  25. D. Depla, R. De Gryse, Plasma Sources Sci. Technol. 10, 547 (2001)

    Article  ADS  CAS  Google Scholar 

  26. D. Depla, A. Colpaert, K. Eufinger, A. Segers, J. Haemers, R. De Gryse, Vacuum 66, 9 (2002)

    Article  CAS  Google Scholar 

  27. F. Schulz, K. Wittmaack, Radiat. Eff. 29, 31 (1976)

    Article  CAS  Google Scholar 

  28. D. Rosen, I. Katardjlev, S. Berg, W. Moller, Nucl. Instrum. Meth. B 228, 193 (2005)

    Article  ADS  CAS  Google Scholar 

  29. J.C.C. Tsai, J.M. Morabito, Surf. Sci. 44, 247 (1974)

    Article  ADS  CAS  Google Scholar 

  30. Y. Kudriavtsev, R. Asomoza, Appl. Surf. Sci. 167, 12 (2000)

    Article  ADS  CAS  Google Scholar 

  31. N. Herbots, C. Hellman, O. Vancauwenberghe, in Low Energy ion-surface interactions, ed. by J.W. Rabalais (Wiley, New York, 1994), ISBN 0471938912

    Google Scholar 

  32. W. Patterson, G. Shirn, J. Vac. Sci. Technol. 4, 343 (1967)

    Article  ADS  CAS  Google Scholar 

  33. D. Depla, R. De Gryse, Vacuum 69, 529 (2003)

    Article  CAS  Google Scholar 

  34. J.L. Alay, W. Vandervorst, Phys. Rev. B 50, 15015 (1994)

    Article  ADS  CAS  Google Scholar 

  35. H. De Witte, Ph.D. University of Antwerp, Belgium

    Google Scholar 

  36. K. Wittmaack, Surf. Sci. 419, 249 (1999)

    Article  ADS  CAS  Google Scholar 

  37. W.D. Sproul, D.J. Christie, D.C. Carter, Thin Solid Films 491, 1 (2005)

    Article  ADS  CAS  Google Scholar 

  38. J. Musschoot, D. Depla, G. Buyle, J. Haemers, R. De Gryse, J Phys. D. Appl. Phys. 39, 3989 (2006)

    Article  CAS  Google Scholar 

  39. D. Depla, J. Haemers, G. Buyle, R. De Gryse, J. Vacuum Sci. Technol. A 24, 934 (2006)

    Article  CAS  Google Scholar 

  40. D. Depla, R. De Gryse, Surf. Coat. Technol. 183, 184 (2004)

    Article  CAS  Google Scholar 

  41. M.C.G. Passeggi, L.I. Vergara, S.M. Mendoza, J. Ferron, Surface Science 50è–510, 825 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Depla, D., Mahieu, S., De Gryse, R. (2008). Depositing Aluminium Oxide: A Case Study of Reactive Magnetron Sputtering. In: Depla, D., Mahieu, S. (eds) Reactive Sputter Deposition. Springer Series in Materials Science, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76664-3_5

Download citation

Publish with us

Policies and ethics