A Study on the Suitability of GSM Signatures for Indoor Location

  • Carlos Bento
  • Teresa Soares
  • Marco Veloso
  • Bruno Baptista
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4794)


Location is an important topic on Ambient Intelligence. Different techniques are used, alone or together, to determine the position of people and objects. One aspect of this problem concerns to indoor location. Various authors propose the analysis of Radio Frequency (RF) signatures as a solution for this challenge. An approach for indoor location is the use of RF signals acquired from a Global System for Mobile Communications (GSM) by Mobile Units(MU).

In this paper we make a study based on around 485.000 signatures gathered from four buildings. We present our conclusions on the suitability and limitations of this approach for indoor location.


Global Position System Bayesian Network Signal Strength Ambient Intelligence Indoor Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Want, R., Hopper, A., Falcão, V., Gibbons, J.: The active badge location system. ACM Transaction on Information Systems 10(1), 91–102 (1992)CrossRefGoogle Scholar
  2. 2.
    Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Personal Communications 4(5), 42–47 (1997)CrossRefGoogle Scholar
  3. 3.
    van Diggelen, F., Abraham, C.: Indoor GPS Technology. CTIA Wireless-Agenda, Dallas (May 2001)Google Scholar
  4. 4.
    Krumm, J., Cermak, G., Horvitz, E.: RightSPOT: A Novel Sense of Location for a Smart Personal Object. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-based User Location and Tracking System. In: IEEE INFOCOM 2000, Tel-Aviv, Israel (2000)Google Scholar
  6. 6.
    Patil, A.P.: Performance of Bluetooth Technologies and Their Applications to Location Sensing. Master of Science Dissertation. Department of Electrical and Computer Engineering (2002)Google Scholar
  7. 7.
    Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM Indoor Localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choudhury, T., Smith, I., Consolvo, S., Hightower, J., Griswold, W.G., de Lara, E.: Mobility Detection Using Everyday GSM Traces. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Lorincz, K., Welsh, M.: MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Battiti, R., Nhat, T.L., Villani, A.: Location-aware computing: a neural network model for determining location in wireless LANs, Technical Report DIT-02-0083 (2002)Google Scholar
  11. 11.
    Otsason, V.: Accurate GSM Indoor Localization Using Wide GSM Fingerprinting. Master’s Thesis, University of Tartu (2005)Google Scholar
  12. 12.
    Chen, M.Y., Sohn, T., Chmelev, D., Haehnel, D., Hightower, J., Hughes, J., LaMarca, A., Potter, F., Smith, I., Varshavsky, A.: Practical Metropolitan-Scale Positioning for GSM Phones. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  14. 14.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., San Francisco (1988)Google Scholar
  15. 15.
    LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place Lab: Device Positioning Using Radio Beacons in the Wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Baptista, B., Bento, C.: InfoAssistant: A Personal Assistant Based on Indoor Location, Technical Specification. University of Coimbra and Portugal Telecom (March 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Carlos Bento
    • 1
  • Teresa Soares
    • 1
  • Marco Veloso
    • 1
  • Bruno Baptista
    • 1
  1. 1.Centro de Informatica e Sistemas da Universidade de Coimbra (CISUC), Portugal Telecom Inovação (PTI) 

Personalised recommendations