Assemblies of Heterogeneous Technologies at the Neonatal Intensive Care Unit

  • Erik Grönvall
  • Luca Piccini
  • Alessandro Pollini
  • Alessia Rullo
  • Giuseppe Andreoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4794)


Ambient Intelligence, pervasive and unobtrusive computing research is introducing new perspectives in a wide range of applications. The Neonatal Intensive Care Unit represents a complex and multi-output context aimed at monitoring and controlling biological signals and parameters in premature newborn. This paper details some methodological and design options for developing technologies that allow end-user composition and control. These options enhance consistent user experiences in environments where different devices, services and processes co-exist. In particular we describe the notion of assemblies of monitoring devices, interpreted as the combination of sensors, tools and services in a distributed and unobtrusive computational and monitoring environment. We report on the importance of flexibility and user-control in the use of such technological assemblies in a neonatal intensive care unit, describing an early prototype of such monitoring system.


premature newborn design open architecture palpable computing biosensors assemblies and user control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiser, M.: The Computer for the Twenty-First Century. Scientific American, 94–10 (September 1991)Google Scholar
  2. 2.
    Schultz, U.P., Corry, E., Lund, K.E.: Virtual Machines for Ambient Computing: A Palpable Computing Perspective. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Rullo, A., Marti, P., Grönvall, E., Pollini, A.: End-user composition and re-use of technologies in the Neonatal Intensive Care Unit. In: Proceedings of Pervasive Healthcare 2006, 29 November – 1 December, Innsbruck, Austria (2006)Google Scholar
  4. 4.
    Grönvall, E., Marti, P., Pollini, A., Rullo, A., Bertelesen, O.: Palpable time for heterogeneous care communities. In: Proceedings of Critical Computing between Sense and Sensibility, The Fourth Decennial Aarhus Conference, August 20-24, Aarhus, Denmark (2005)Google Scholar
  5. 5.
    Kyng, M.: Scandinavian Design: Users in Product Development. In: CHI 1994. Human Factors in Computing Systems, Celebrating Interdependence, Association for Computing Machinery, Boston, MA (1994)Google Scholar
  6. 6.
    Ehn, P., Kyng, M.: The collective resource approach to systems design. In: Bjerknes, G., Ehn, P., Kyng, M. (eds.) Computers and democracy - a Scandinavian challenge, Gower, Aldershot, UK (1987)Google Scholar
  7. 7.
    Höök, K.: Designing Familiar Open Surfaces. In: NordiCHI 2006, Oslo, Norway, ACM Press, New York (2006)Google Scholar
  8. 8.
    Gaver, B., Dunne, T., Pacenti, E.: Design: Cultural probes. Interactions 6(1), 21–29 (1999)CrossRefGoogle Scholar
  9. 9.
    Marti, P., Grönvall, E., Pollini, A., Rullo, A.: Designing inspection strategies for palpable Assemblies, Designing for Palpability. In: Workshop at Pervasive 2007, May 13-17, Toronto, Canada (2007)Google Scholar
  10. 10.
    Grönvall, E., Marti, P., Pollini, A., Rullo, A.: Active surfaces: a novel concept for end user composition. In: NordiCHI 2006 (October 14-18, 2006)Oslo, Norway (2006)Google Scholar
  11. 11.
    Ingstrup, M., Hansen, K.M.: Palpable Assemblies: Dynamic Service Composition for Ubiquitous Computing. In: Proceedings of the Seventeenth International Conference on Software Engineering and Knowledge Engineering, Taipei, Taiwan, Republic of China (July 2005)Google Scholar
  12. 12.
    Brown, A., Johnston, S., Kelly, K.: Using Service Oriented Architecture and Component Based Development to Build Web Services Application. Rational-IBM White paper, 2003Brown, A.: Large-Scale, Component-Based Development. Prentice Hall, Englewood Cliffs (2000)Google Scholar
  13. 13.
    Büscher, M., Christensen, M., Hansen, K.M., Mogensen, P., Shapiro, D.: Bottom-up, top-down? Connecting software architecture design with use. In: Voss, A., Hartswood, M., Ho, K., Procter, R., Rouncefield, M., Slack, R., Büscher, M. (eds.) Configuring user-designer relations: Interdisciplinary perspectives, Springer, Heidelberg (2005)Google Scholar
  14. 14.
    PalCom. PalCom External Report 50: Deliverable 39 (2.2.2): PalCom Open Architecture. Technical report, PalCom Project IST-002057 (December 2006),[2.2.2]-Palcom-Open-Architecture.pdf
  15. 15.
    Di Rienzo, M., Andreoni, G., Piccini, L.: A Wearable system for the unobtrusive measure of ecg. In: Proceedings of Mediterranean Conference on Medical and Biological Engineering, Naples, Italy (July-August 2004)Google Scholar
  16. 16.
    Lymberis, D.d.R.A.: Wearable eHealth systems for personalised health management. IOS press, Amsterdam (2004)Google Scholar
  17. 17.
    Picard, R.W., Healey, J.: Affective Wearables. Personal Technologies. Personal and Ubiquitous Computing 1, 231–240 (1997)Google Scholar
  18. 18.
    Post, E., Orth, M.: Smart Fabric, or “wearable clothing”. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  19. 19.
    Piccini, L., Arnone, L., Beverina, F., Cucchi, A., Petrelli, L., Andreoni, G.: Wireless DSP architecture for biosignals recording. In: Proceedings of IEEE international Symposium on Signal Processing and Information Technology Conference, Rome, Italy (2004)Google Scholar
  20. 20.
    Veltink, P.H., Bussmann, H.B.J., de Vries, W., Martens, W.L.J., Van Lummel, R.C.: Detection of static and dynamic activities using uniaxial accelerometers. IEEE Tran. Rehabil. Eng. 4(4), 357–385 (1996)Google Scholar
  21. 21.
    Grossman, P., Wilhelm, F., Spoerle, M.: Respiratory sinus arrhytmia, cardiac vagal control, and daily activityGoogle Scholar
  22. 22.
    Webster, J.G.: Medical instrumentation: Application and Design. Wiley, Chichester (1997)Google Scholar
  23. 23.
    Webster, J.G.: Noise sources in surfaces electrodes. Innov. Tech. Biol. Med. 12(1), 39–45 (1991)Google Scholar
  24. 24.
    Jossinet, J., McAdams, E.T.: The skin/electrode interfaces impedance. Innov. Tech. Biol. Med. 12(1), 21–31 (1991)Google Scholar
  25. 25.
    Zinc, R.: Distortion and interference in the measurement of electric signals from the skin (ecg, emg, eeg). Innov. Tech. Biol. Med. 12(1), 46–57 (1991)Google Scholar
  26. 26.
    Fowles, D.C., Christie, M.J., Edelberg, R., Grings, W.W., Lykken, D.T., Venables, P.H.: Publication recommendations for electro-dermal measurements. Psychophysiology 18(3) (1981)Google Scholar
  27. 27.
  28. 28.
    Svensson, D., Magnusson, B., Hedin, G.: Composing adhoc applications on ad-hoc networks using MUI. In: Proceedings of Net.ObjectDays, 6th Annual International Conference on Object-Oriented and Internet-based Technologies, Concepts, and Applications for a Networked World, Erfurt, Germany (September 2005)Google Scholar
  29. 29.
    Kristensen, M., Kyng, M., Palen, L.: Participatory design in emergency medical service: designing for future practice. In: Proceedings of the SIGCHI conference on Human Factors in computing systems, Montréal, Québec (2006)Google Scholar
  30. 30.
    Kyng, M., Toftdahl Nielsen, E.: Challenges in designing interactive systems for emergency response. In: Proceedings of the 6th ACM conference on Designing Interactive systems, University Park, PA, USA (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Erik Grönvall
    • 1
  • Luca Piccini
    • 2
  • Alessandro Pollini
    • 1
  • Alessia Rullo
    • 1
  • Giuseppe Andreoni
    • 2
  1. 1.University of Siena, Communication Science Department, Via Roma 56, 53100 SienaItaly
  2. 2.Politecnico di Milano, Bioengineering Department, Via Golgi 39, 20133 MilanItaly

Personalised recommendations