Distributed AI for Ambient Intelligence: Issues and Approaches

  • Theodore Patkos
  • Antonis Bikakis
  • Grigoris Antoniou
  • Maria Papadopouli
  • Dimitris Plexousakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4794)


Research in many fields of AI, such as distributed planning and reasoning, agent teamwork and coalition formation, cooperative problem solving and action theory has advanced significantly over the last years, both from a theoretical and a practical perspective. In the light of the development towards ambient, pervasive and ubiquitous computing, this research will be tested under new, more demanding realistic conditions, stimulating the emergence of novel approaches to handle the challenges that these open, dynamic environments introduce. This paper identifies shortcomings of state-of-the-art techniques in handling the complexity of the Ambient Intelligence vision, motivated by the experience gained during the development and usage of a context-aware platform for mobile devices in dynamic environments. The paper raises research issues and discusses promising directions for realizing the objectives of near-future pervasive information systems.


Ambient Intelligence Distributed AI Context Awareness Action Theories Multi-agent Cooperation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rogers, Y.: Moving on from Weiser’s Vision of Calm Computing: Engaging UbiComp Experiences. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 404–421. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Patkos, T., Bikakis, A., Antoniou, G., Papadopouli, M., Plexousakis, D.: A Semantics-based Framework for Context-Aware Services: Lessons Learned and Challenges. In: UIC 2007, pp. 839–848 (2007)Google Scholar
  3. 3.
    Chen, H., Finin, T., Joshi, A.: The SOUPA Ontology for Pervasive Computing. In: Tamma, V., Stephen Cranefield, T.F., Willmott, S. (eds.) Ontologies for Agents: Theory and Experiences, Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Fikes, R., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. In: IJCAI, pp. 608–620 (1971)Google Scholar
  5. 5.
    Levesque, H., Pirri, F., Reiter, R.: Foundations for the Situation Calculus. In: Linkoping Electronic Articles in Computer and Information Science, vol. 3 (1998)Google Scholar
  6. 6.
    Pinto, J.A.: Temporal Reasoning in the Situation Calculus. PhD thesis (1994)Google Scholar
  7. 7.
    Reiter, R.: Natural Actions, Concurrency and Continuous Time in the Situation Calculus. In: KR 1996. Principles of Knowledge Representation and Reasoning: Proceedings of the Fifth International Conference, Cambridge, Massachusetts, USA, pp. 2–13 (November 1996)Google Scholar
  8. 8.
    Pinto, J., Sernadas, A., Sernadas, C., Mateus, P.: Non-determinism and Uncertainty in the Situation Calculus. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8(2), 127–149 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Scherl, R.B., Levesque, H.J.: Knowledge, Action, and the Frame Problem. Artif. Intell. 144(1-2), 1–39 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Papadakis, N., Plexousakis, D.: Actions with Duration and Constraints: The Ramification Problem in Temporal Databases. In: ICTAI 2002. Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence, pp. 83–90. IEEE Computer Society, Washington, DC, USA (2002)CrossRefGoogle Scholar
  11. 11.
    Thielscher, M.: From Situation Calculus to Fluent Calculus: State Update Axioms as a Solution to the Inferential Frame Problem. Artif. Intell. 111(1-2), 277–299 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Thielscher, M.: The Concurrent, Continuous Fluent Calculus. Studia Logica 67(3), 315–331 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Thielscher, M.: Modeling Actions with Ramifications in Nondeterministic, Concurrent, and Continuous Domains - and a Case Study. In: Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence, AAAI Press / The MIT Press, pp. 497–502 (2000)Google Scholar
  14. 14.
    Scherl, R.B.: Action, Belief Change and the Frame Problem: A Fluent Calculus Approach. In: Proceedings of the Sixth workshop on Nonmonotonic Reasoning, Action, and Change at IJCAI 2005, Edinburgh, Scotland (August 2005)Google Scholar
  15. 15.
    Shanahan, M.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–431. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Miller, R., Shanahan, M.: Some Alternative Formulations of the Event Calculus. In: Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pp. 452–490. Springer, London, UK (2002)Google Scholar
  17. 17.
    Gelfond, M., Lifschitz, V.: Action Languages. Electronic Transactions on AI 3 (1998)Google Scholar
  18. 18.
    Giunchiglia, E., Lifschitz, V.: An Action Language Based on Causal Explanation: Preliminary Report. In: AAAI 1998/IAAI 1998: Proceedings of the Fifteenth National/Tenth Conference on Artificial intelligence/Innovative Applications of Artificial Intelligence, American Association for Artificial Intelligence, pp. 623–630 (1998)Google Scholar
  19. 19.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic Causal Theories. Artif. Intell. 153(1-2), 49–104 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Finzi, A., Lukasiewicz, T.: Game-Theoretic Reasoning About Actions in Nonmonotonic Causal Theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 185–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Boutilier, C., Reiter, R., Price, B.: Symbolic Dynamic Programming for First-Order MDPs. In: IJCAI 2001. Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, Seattle, Washington, USA, pp. 690–700 (2001)Google Scholar
  22. 22.
    Großmann, A., Hölldobler, S., Skvortsova, O.: Symbolic Dynamic Programming within the Fluent Calculus. In: Ishii, N. (ed.) Proceedings of the IASTED International Conference on Artificial and Computational Intelligence, pp. 378–383. ACTA Press, Tokyo, Japan (2002)Google Scholar
  23. 23.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  24. 24.
    Bresina, J., Dearden, R., Meuleau, N., Ramkrishnan, S., Smith, D., Washington, R.: Planning under Continuous Time and Resource Uncertainty: A Challenge for AI. In: UAI 2002. Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence, pp. 77–84. Morgan Kaufmann, San Francisco, CA (2002)Google Scholar
  25. 25.
    Pollack, M., Horty, J.F.: There’s More to Life than Making Plans. The AI Magazine 20(4), 71–84 (1999)Google Scholar
  26. 26.
    Blythe, J.: Decision-Theoretic Planning. AI Magazine 20(2), 37–54 (1999)Google Scholar
  27. 27.
    Mueller, E.: Automating Commonsense Reasoning Using the Event Calculus. Communications of the ACM (in press, 2007)Google Scholar
  28. 28.
    des Jardins, M., Durfee, E.H., Ortiz Jr., C.L., Wolverton, M.: A Survey of Research in Distributed, Continual Planning. AI Magazine 20(4), 13–22 (1999)Google Scholar
  29. 29.
    Durfee, E.H., Lesser, V.R.: Partial Global Planning: A Coordination Framework for Distributed Hypothesis Formation. IEEE Transactions on Systems, Man, and Cybernetics 21(5), 1167–1183 (1991)CrossRefGoogle Scholar
  30. 30.
    Lesser, V.R.: Evolution of the GPGP/TÆMS Domain-Independent Coordination Framework. In: AAMAS 2002. Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–2. ACM Press, New York (2002)CrossRefGoogle Scholar
  31. 31.
    Durfee, E.H.: Distributed Problem Solving and Planning. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS (LNAI), vol. 2086, pp. 118–149. Springer, London, UK (2001)Google Scholar
  32. 32.
    Cohen, P.R., Levesque, H.J.: Teamwork. Technical Report 504, Menlo Park, CA (1991)Google Scholar
  33. 33.
    Wooldridge, M., Jennings, N.R.: Towards a Theory of Cooperative Problem Solving. In: Perram, J., Müller, J.P. (eds.) MAAMAW 1994. LNCS, vol. 1069, pp. 40–53. Springer, London, UK (1996)Google Scholar
  34. 34.
    Weld, D.S.: An Introduction to Least Commitment Planning. AI Magazine 15(4), 27–61 (1994)Google Scholar
  35. 35.
    Cox, J.S., Durfee, E.H.: An Efficient Algorithm for Multiagent Plan Coordination. In: AAMAS 2005. Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 828–835. ACM Press, New York (2005)CrossRefGoogle Scholar
  36. 36.
    Dimopoulos, Y., Moraitis, P.: Multi-agent Coordination and Cooperation Through Classical Planning. In: IAT 2006. Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2006 Main Conference Proceedings) (IAT 2006), pp. 398–402. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  37. 37.
    Cox, J.S., Durfee, E.H., Bartold, T.: A Distributed Framework for Solving the Multiagent Plan Coordination Problem. In: AAMAS 2005. Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 821–827. ACM Press, New York (2005)CrossRefGoogle Scholar
  38. 38.
    Yang, Q.: Intelligent Planning: A Decomposition and Abstraction Based Approach. Springer, London (1997)zbMATHGoogle Scholar
  39. 39.
    Valk, J.M., de Weerdt, M.M., Witteveen, C.: Algorithms for Coordination in Multi-Agent Planning. In: Vlahavas, I., Vrakas, D. (eds.) Intelligent Techniques for Planning, pp. 194–224. Idea Group Inc., London (2005)Google Scholar
  40. 40.
    Sauro, L., Gerbrandy, J., van der Hoek, W., Wooldridge, M.: Reasoning About Action and Cooperation. In: AAMAS 2006. Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 185–192. ACM Press, New York, USA (2006)CrossRefGoogle Scholar
  41. 41.
    Pauly, M.: A Modal Logic for Coalitional Power in Games. Journal of Logic and Computation 12, 146–166 (2002)CrossRefMathSciNetGoogle Scholar
  42. 42.
    van der Hoek, W., Wooldridge, M.: On the Logic of Cooperation and Propositional Control. Artif. Intell. 164(1-2), 81–119 (2005)zbMATHCrossRefGoogle Scholar
  43. 43.
    de Weerdt, M., ter Mors, A., Witteveen, C.: Multi-agent Planning: An Introduction to Planning and Coordination. In: Handouts of the European Agent Summer School, pp. 1–32 (2005)Google Scholar
  44. 44.
    Chen, H., Finin, T.: Beyond Distributed AI, Agent Teamwork in Ubiquitous Computing. In: AAMAS 2002. Workshop on Ubiquitous Agents on Embedded, Wearable, and Mobile Devices (July 2002)Google Scholar
  45. 45.
    Erol, K., Hendler, J., Nau, D.S.: HTN Planning: Complexity and Expressivity. In: AAAI 1994. Proceedings of the Twelfth National Conference on Artificial Intelligence, Menlo Park, CA, USA, American Association for Artificial Intelligence, vol. 2, pp. 1123–1128 (1994)Google Scholar
  46. 46.
    Amigoni, F., Gatti, N., Pinciroli, C., Roveri, M.: What Planner for Ambient Intelligence Applications? IEEE Transactions on Systems, Man, and Cybernetics, Part A 35(1), 7–21 (2005)CrossRefGoogle Scholar
  47. 47.
    Hadad, M., Kraus, S., Gal, Y., Lin, R.: Temporal Reasoning for a Collaborative Planning Agent in a Dynamic Environment. Annals of Mathematics and Artificial Intelligence 37(4), 331–379 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Friedland, P., Iwasaki, Y.: The Concept and Implementation of Skeletal Plans. J. Autom. Reasoning 1(2), 161–208 (1985)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Miksch, S., Seyfang, A.: Continual Planning with Time-Oriented, Skeletal Plans. In: ECAI, pp. 511–515 (2000)Google Scholar
  50. 50.
    Baier, J.A., McIlraith, S.A.: On Planning with Programs that Sense. In: KR, pp. 492–502 (2006)Google Scholar
  51. 51.
    McIlraith, S., Fadel, R.: Planning with Complex Actions. In: NMR 2002. Proc. International Workshop on Non-Monotonic Reasoning, pp. 356–364 (2002)Google Scholar
  52. 52.
    Console, L., Torasso, P.: A Spectrum of Logical Definitions of Model-Based Diagnosis. Comput. Intell. 7(3), 133–141 (1991)CrossRefGoogle Scholar
  53. 53.
    Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of Single and Multi-agent Plans. In: AAMAS 2005. Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 805–812. ACM Press, New York (2005)CrossRefGoogle Scholar
  54. 54.
    Kalech, M., Kaminka, G.A.: On the Design of Social Diagnosis Algorithms for Multi-agent Teams. In: IJCAI, pp. 370–375 (2003)Google Scholar
  55. 55.
    Coddington, A., Luck, M.: A Motivation-based Planning and Execution Framework. International Journal on Artificial Intelligence Tools 13(1), 5–25 (2004)CrossRefGoogle Scholar
  56. 56.
    Look, G., Peters, S., Shrobe, H.: Plan-driven Ubiquitous Computing. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 66–73. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Theodore Patkos
    • 1
  • Antonis Bikakis
    • 1
  • Grigoris Antoniou
    • 1
  • Maria Papadopouli
    • 1
  • Dimitris Plexousakis
    • 1
  1. 1.Institute of Computer Science, FO.R.T.H., Vassilika Vouton, P.O. Box 1385, GR 71110, HeraklionGreece

Personalised recommendations