Skip to main content

A Computationally Fast and Parametric Model to Estimate Protein-Ligand Docking Time for Stochastic Event Based Simulation

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4780))

Abstract

This paper presents a computationally fast analytical model to estimate the time taken for protein-ligand docking in biological pathways. The environment inside the cell has been reported to be unstable with a considerable degree of randomness creating a stochastic resonance. To facilitate the understanding of the dynamic behavior of biological systems, we propose an “in silico” stochastic event based simulation. The implementation of this simulation requires the computation of the execution times of different biological events such as the protein-ligand docking process (time required for ligand-protein binding) as a random variable. The next event time of the system is computed by adding the event execution time to the clock value of the event start time. Our mathematical model takes special consideration of the actual biological process of ligand-protein docking with emphasis on the structural configurations of the ligands, proteins and the binding mechanism that enable us to control the model parameters considerably. We use a modification of the collision theory based approach to capture the randomness of this problem in discrete time and estimate the first two moments of this process. The numerical results for the first moment show promising correspondence with experimental results and demonstrate the efficacy of our model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Human Genome Project, http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

  2. Schena, M.: Microarray Analysis, ISBN: 0471414433 (2002)

    Google Scholar 

  3. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P., Trent, J.M.: Expression profiling using cDNA microarrays. Nature Genetics Supplement 21, 10–14 (1999)

    Article  Google Scholar 

  4. McCulloch, A.D., Huber, G.: Integrative biological modeling in silico. In Silico Simulation of Biological Processes, Novartis Foundation Symposium 247 (2002)

    Google Scholar 

  5. Bower, J.A., Bolouri, H.: Computational Modeling of Genetic and Biological Network. MIT Press, Cambridge (2001)

    Google Scholar 

  6. Hunter, P., Nielsen, P., Bullivant, D.: In Silico Simulation of Biological Processes. In: Novartis Foundation Symposium No. 247, pp. 207–221. Wiley, Chichester (2002)

    Google Scholar 

  7. The RCSB Protein Data Bank, http://www.rcsb.org/pdb/

  8. von Hippel, P.H., Berg, O.G.: On the specificity of DNA-protein interactions. In: Proc. Natl. Acad. Sci., USA, vol. 83, pp. 1608–1612 (1986)

    Google Scholar 

  9. Ghosh, S., Ghosh, P., Basu, K., Das, S., Daefler, S.: SimBioSys: A Discrete Event Simulation Platform for ’in silico’ Study of Biological Systems. In: Proceedings of 39th IEEE Annual Simulation Symposium, Huntsville, AL (April 2 - 6, 2006)

    Google Scholar 

  10. Ghosh, P., Ghosh, S., Basu, K., Das, S., Daefler, S.: An Analytical Model to Estimate the time taken for Cytoplasmic Reactions for Stochastic Simulation of Complex Biological Systems. In: 2nd IEEE Granular Computing Conf., USA (2006)

    Google Scholar 

  11. Ghosh, P., Ghosh, S., Basu, K., Das, S., Daefler, S.: Stochastoc Modeling of Cytoplasmic Reactions for Complex Biological Systems. In: IEE International Conference on Computational Science and its Applications, Glasgow, Scotland, May 8-11 (2006)

    Google Scholar 

  12. Ghosh, S., Ghosh, P., Basu, K., Das, S.K.: iSimBioSys: An ‘In Silico’ Discrete Event Simulation Framework for Modeling Biological Systems. IEEE Comp. Systems BioInf. Conf. (2005)

    Google Scholar 

  13. Hasty, J., Collins, J.J.: Translating the Noise. Nature 31, 13–14 (2002)

    Google Scholar 

  14. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  15. Kitano, H.: Cell Designer: A modeling tool of biochemical networks. online at, http://www.celldesigner.org/

  16. Adalsteinsson, D., McMillen, D., Elston, T.C.: Biochemical Network Stochastic Simulator (BioNets): software for stochastic modeling of biochemical networks. BMC Bioinformatics (March 2004)

    Google Scholar 

  17. Le Novre, N., Shimizu, T.S.: StochSim: modeling of stochastic biomolecular processes. Bioinformatics 17, 575–576 (2000)

    Article  Google Scholar 

  18. Cell Illustrator. online at, http://www.fqspl.com.pl/

  19. Camacho, C.J., Kimura, S.R., DeLisi, C., Vajda, S.: Kinetics of Desolvation-Mediated Protein-Protein Binding. Biophysical Journal 78, 1094–1105 (2000)

    Article  Google Scholar 

  20. DeLisi, C., Wiegel, F.: Effect of nonspecific forces and finite receptor number on rate constants of ligand-cell-bound-receptor interactions. In: Proc. Natl. Acad. Sci., 78th edn., USA, pp. 5569–5572 (1981)

    Google Scholar 

  21. Smoluchowski, M.V.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Loeschungen. Z. Phys. Chem. 92, 129–168

    Google Scholar 

  22. Northrup, S.H., Erickson, H.P.: Kinetics of proteinprotein association explained by Brownian dynamics computer simulations. In: Proc. Natl. Acad. Sci., USA, vol. 89, pp. 3338–3342 (1992)

    Google Scholar 

  23. Fischer, H., Polikarpov, I., Craievich, A.F.: Average protein density is a molecular-weight-dependent function. Protein Science 13, 2825–2828 (2004)

    Article  Google Scholar 

  24. Sobolev, V., Sorokine, A., Prilusky, J., Abola, E.E., Edelman, M.: Automated analysis of interatomic contacts in proteins. Bioinformatics 15, 327–332 (1999)

    Article  Google Scholar 

  25. Nanomedicine, vol. I: Basic Capabilities, http://www.nanomedicine.com/NMI/3.2.5.htm

  26. Camacho, C., Weng, Z., Vajda, S., De Lisi, C.: Biophisics J, vol. 76, pp. 1166–1178 (1999)

    Google Scholar 

  27. Camacho, C., De Lisi, C., Vajda, S.: Thermodynamics of the Drug-Receptor Interactions. In: Raffa, R. (ed.) Wiley, London (2001)

    Google Scholar 

  28. Camacho, C., Vajda, S.: Protein docking along smooth association pathways. PNAS 98(19), 10636–10641 (2001)

    Article  Google Scholar 

  29. Sharp, K., Fine, R., Honig, B.: Computer simulations of the diffusion of a substrate to an active site of an enzyme. Science 236, 1460–1463 (1987)

    Article  Google Scholar 

  30. Stone, R., Dennis, S., Hofsteenge, J.: Quantitative evaluation of the contribution of ionic interactions to the formation of thrombin-hirudin complex. Biochemistry 28, 6857–6863 (1989)

    Article  Google Scholar 

  31. Eltis, L., Herbert, R., Barker, P., Mauk, A., Northrup, S.: Reduction of horse ferricytochrome c by bovine liver ferrocytochrome b 5. Experimental and theoretical analysis. Biochemistry 30, 3663–3674 (1991)

    Article  Google Scholar 

  32. Schreiber, G., Fersht, A.: Rapid, electrostatically assisted association of proteins. Nature Struct. Biol. 3, 427–431 (1996)

    Article  Google Scholar 

  33. Gabdoulline, R., Wade, R.: Simulation of the diffusional association of barnase and barstar. Biophisics J. 72, 1917–1929 (1997)

    Google Scholar 

  34. Vijaykumar, M., Wong, K., Schreiber, G., Fersht, A., Szabo, A., Zhou, H.: Electrostatic enhancement of diffusion-controlled protein-protein association: comparison of theory and experiment on Barnase and Barstar. J. Mol. Biol. 278, 1015–1024 (1998)

    Article  Google Scholar 

  35. Chothia, C., Janin, J.: Principles of protein-protein recognition. Nature 256, 705–708 (1975)

    Article  Google Scholar 

  36. Camacho, C., Weng, Z., Vajda, S., DeLisi, C.: Free energy landscapes of encounter complexes in protein-protein association. Biophisics J. 76, 1166–1178 (1999)

    Google Scholar 

  37. Tomita, M., et al.: ECell: Software environment for whole cell simulation. Bioinformatics 15(1), 72–84 (1999)

    Article  Google Scholar 

  38. Sauro, H.M.: Jarnac: a system for interactive metabolic analysis. Animating the Cellular Map. In: 9th International BioThermoKinetics Meeting, Stellenbosch University Press, ch. 33, pp. 221–228 (2000)

    Google Scholar 

  39. Ghosh, P., Ghosh, S., Basu, K., Das, S., Daefler, S.: Modeling the Diffusion process in Stochastic Event based Simulation of the PhoPQ system. International Symposium on Computational Biology and Bioinformatics (ISBB), India (December 2006)

    Google Scholar 

  40. Ghosh, P., Ghosh, S., Basu, K., Das, S.K.: Modeling protein-DNA binding time in Stochastic Discrete Event Simulation of Biological Processes. submitted to the Recomb Satellite Conference on Systems Biology, San Diego, USA (November 2006)

    Google Scholar 

  41. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Proceedings of the Pacific Symposium of Biocomputing 2001 (PSB2001), vol. 6, pp. 459–470

    Google Scholar 

  42. Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31

    Google Scholar 

  43. Regev, A.: Representation and simulation of molecular pathways in the stochastic π-calculus. In: Proceedings of the 2nd workshop on Computation of Biochemical Pathways and Genetic Networks (2001)

    Google Scholar 

  44. Regev, A., Silverman, W., Shapiro, E.: Representing biomolecular processes with computer process algebra: π-calculus programs of signal transduction pathways. In: Proceedings of the Pacific Symposium of Biocomputing 2000, World Scientific Press, Singapore

    Google Scholar 

  45. Finn, R.D., Marshall, M., Bateman, A.: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21, 410–412 (2005)

    Article  Google Scholar 

  46. Fogler, H., Gurmen, M.: Elements of Chemical Reaction Engineering. ch. 3.1, online at http://www.engin.umich.edu/cre/03chap/html/collision/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Corrado Priami

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghosh, P., Ghosh, S., Basu, K., Das, S.K. (2007). A Computationally Fast and Parametric Model to Estimate Protein-Ligand Docking Time for Stochastic Event Based Simulation. In: Priami, C. (eds) Transactions on Computational Systems Biology VIII. Lecture Notes in Computer Science(), vol 4780. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76639-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76639-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76638-4

  • Online ISBN: 978-3-540-76639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics