Skip to main content

Optimizing Inference in Bayesian Networks and Semiring Valuation Algebras

  • Conference paper
MICAI 2007: Advances in Artificial Intelligence (MICAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4827))

Included in the following conference series:

Abstract

Previous work on context-specific independence in Bayesian networks is driven by a common goal, namely to represent the conditional probability tables in a most compact way. In this paper, we argue from the view point of the knowledge compilation map and conclude that the language of Ordered Binary Decision Diagrams (OBDD) is the most suitable one for representing probability tables, in addition to the language of Algebraic Decision Diagrams (ADD). We thus suggest the replacement of the current practice of using tree-based or rule-based representations. This holds not only for inference in Bayesian networks, but is more generally applicable in the generic framework of semiring valuation algebras, which can be applied to solve a variety of inference and optimization problems in different domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  2. Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function propagation. In: Shachter, R.D., Levitt, T.S., Lemmer, J.F., Kanal, L.N. (eds.) UAI 1988. 4th Conference on Uncertainty in Artificial Intelligence, Minneapolis, USA, pp. 169–198 (1988)

    Google Scholar 

  3. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in Bayesian networks. In: Horvitz, E., Jensen, F. (eds.) UAI 1996. 12th Conference on Uncertainty in Artificial Inteligence, Portland, USA, pp. 115–123 (1996)

    Google Scholar 

  4. Smith, J.E., Holtzman, S., Matheson, J.E.: Structuring conditional relationships in influence diagrams. Operations Research 41(2), 280–297 (1993)

    Article  Google Scholar 

  5. Wong, S.K., Butz, C.: Contextual weak independence in Bayesian networks. In: Laskey, K.B., Prade, H. (eds.) UAI 1999. 15th Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, pp. 670–679 (1999)

    Google Scholar 

  6. Geiger, D., Heckerman, D.: Advances in probabilistic reasoning. In: UAI 1991. 6th Annual Conference on Uncertainty in Artificial Intelligence, Los Angeles, USA, pp. 118–126 (1991)

    Google Scholar 

  7. Galles, D., Pearl, J.: Axioms of causal relevance. Artificial Intelligence 97(1–2), 9–43 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cano, A., Moral, S., Salmeron, A.: Penniless propagation in join trees. International Journal of Intelligent Systems 15(11), 1027–1059 (2000)

    Article  MATH  Google Scholar 

  9. Bellot, D., Bessière, P.: Approximate discrete probability distribution representation using a multi-resolution binary tree. In: ICTAI 2003. 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, USA, pp. 498–503 (2003)

    Google Scholar 

  10. Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic inference. Journal of Artificial Intelligence Research 18, 263–313 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimination. In: IJCAI 2007. 20th International Joint Conference on Artificial Intelligence, Hyderabad, India (2007)

    Google Scholar 

  12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  13. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence Research 17, 229–264 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Wachter, M., Haenni, R.: Propositional DAGs: a new graph-based language for representing Boolean functions. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) KR 2006. 10th International Conference on Principles of Knowledge Representation and Reasoning, pp. 277–285. AAAI Press, USA (2006)

    Google Scholar 

  15. Kohlas, J.: Information Algebras: Generic Stuctures for Inference. Springer, London (2003)

    Google Scholar 

  16. Kohlas, J., Wilson, N.: Exact and approximate local computation in semiring induced valuation algebras. Technical Report 06–06, Department of Informatics, University of Fribourg, Switzerland (2006)

    Google Scholar 

  17. Kohlas, J., Shenoy, P.P.: Computation in valuation algebras. In: Gabbay, D.M., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems. Algorithms for Uncertainty and Defeasible Reasoning, vol. 5, pp. 5–39. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  18. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artificial Intelligence 113(1–2), 41–85 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. In: Lightner, M.R., Jess, J.A.G. (eds.) 4th IEEE/ACM International Conference on Computer-Aided Design, pp. 188–191. IEEE Computer Society Press, California (1993)

    Google Scholar 

  20. Shenoy, P.P., Shafer, G.: Axioms for probability and belief function propagation. In: Shafer, G., Pearl, J. (eds.) Readings in Uncertain Reasoning, pp. 575–610. Morgan Kaufmann, USA (1990)

    Google Scholar 

  21. Wachter, M., Haenni, R.: Multi-state directed acyclic graphs. In: Kobti, Z., Wu, D. (eds.) CanAI 2007. 20th Canadian Conference on Artificial Intelligence, Montréal, Canada. LNCS (LNAI), vol. 4509, pp. 464–475 (2007)

    Google Scholar 

  22. Zhang, N.L., Poole, D.: Exploiting causal independence in Bayesian network inference. Journal of Artificial Intelligence Research 5, 301–328 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Shenoy, P.P.: Valuation-based systems: A framework for managing uncertainty in expert systems. In: Zadeh, L.A., Kacprzyk, J. (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 83–104. John Wiley and Sons, New York (1992)

    Google Scholar 

  24. Schneuwly, C., Pouly, M., Kohlas, J.: Local computation in covering join trees. Technical Report 04–16, Department of Informatics, University of Fribourg, Switzerland (2004)

    Google Scholar 

  25. Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and Applications. Number 56 in Monographs on Discrete Mathematics and Applications. SIAM  (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh Ángel Fernando Kuri Morales

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wachter, M., Haenni, R., Pouly, M. (2007). Optimizing Inference in Bayesian Networks and Semiring Valuation Algebras. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76631-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76630-8

  • Online ISBN: 978-3-540-76631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics