Skip to main content

Störungen des Stoffwechsels von Aminosäuren und organischen Säuren

  • Chapter
Pädiatrie
  • 180 Accesses

Auszug

Definition. Der Mensch nimmt mit einer normalen eiweißhaltigen Ernährung wesentlich größere Mengen der essenziellen Aminosäure Phenylalanin zu sich, als er für seine Eiweißsynthese benötigt. Überschüssiges Phenylalanin wird daher unter normalen Bedingungen ganz überwiegend durch die Phenylalaninhydroxylase (PAH) zu Tyrosin umgewandelt. Dieses Enzym benötigt als aktiven Kofaktor Tetrahydrobiopterin (BH4). Sowohl ein Aktivitätsverlust oder ein Fehlen des Apoenzyms PAH als auch ein Mangel des Kofaktors BH4 vermindern die Aktivität des Enzymsystems. Dabei kommt es bei normaler Eiweißzufuhr zu erhöhten Phenylalaninspiegeln in Blut und Organen. Tyrosin wird durch den Defekt zu einer essenziellen Aminosäure. Erhöhte Phenylalaninkonzentrationen führen im Säuglings- und Kleinkindalter während der Phase der Entwicklung zu irreversiblen Schädigungen des Gehirns, nach Abschluss der Hirnentwicklung zu reversiblen Funktionseinschränkungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Azen C, Koch R, Friedman E et al. (1996) Summary of findings from the United States Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155[Suppl 1]: S29–32

    Article  Google Scholar 

  • Burgard P, Rupp A, Konecki DS et al. (1996a) Phenylalanine hydroxylase genotypes, predicted residual enzyme activity and phenotypic parameters of diagnosis and treatment of phenylketonuria. Eur J Pediatr 155[Suppl 1]: S11–15

    Article  Google Scholar 

  • Burgard P Schmidt E, Rupp A et al. (1996b) Intellectual development of the patients of the German Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155[Suppl 1]: S33–38

    Article  Google Scholar 

  • Burgard P, Rey F, Rupp A et al. (1997) Neuropsychologic functions of early treated patients with phenylketonuria, on and off diet: results of a crossnational and cross-sectional study. Pediatr Res 41: 368–374

    Article  CAS  PubMed  Google Scholar 

  • Güttler F, Guldberg P (1996) The influence of mutations on enzyme activity and phenylalanine tolerance in phenylalanine hydroxylase deficiency. Eur J Pediatr 155[Suppl 1]: S6–10

    Article  PubMed  Google Scholar 

  • Koch R, Fishier K, Azen C et al. (1997) The relationship of genotype to phenotype in phenylalanine hydroxylase deficiency. Biochem Mol Med 60:92–101

    Article  CAS  PubMed  Google Scholar 

  • Muntau AC, Roschinger W, Habich M et al. (2002) Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 347: 2122–2132

    Article  CAS  PubMed  Google Scholar 

  • Möller HE, Weglage J, Wiedermann D et al. (1997) Kinetics of phenylalanine transport at the human blood-brain barrier investigated in vivo. Brain Res 778: 329–337

    Article  PubMed  Google Scholar 

  • Przyrembel H (1996) Recommendations for protein and amino acid intake in phenylketonuria patients. Eur J Pediatr 155[Suppl 1]: S130–131

    Article  PubMed  Google Scholar 

  • Schmidt E, Burgard P, Rupp A (1996) Effects of concurrent phenylalanine levels on sustained attention and calculation speed in patients treated early for phenylketonuria. Eur J Pediatr 155[Suppl 1]: S82–86

    Article  Google Scholar 

  • Weglage J, Ullrich K, Pietsch M et al. (1997) Intellectual, neurologic, and neuropsychologic outcome in untreated subjects with nonphenylketonuric hyperphenylalaninemia. German Collaborative Study on Phenylketonuria. Pediatr Res 42: 378–384

    Article  CAS  PubMed  Google Scholar 

Literatur

  • Hanley WB, Koch R, Levy HL et al. (1996) The North American Maternal Phenylketonuria Collaborative Study, developmental assessment of the offspring: preliminary report. Eur JPediatr 155[Suppl 1]: S169–172

    Article  Google Scholar 

  • Lenke RR, Levy HL (1980) Maternal phenylketonuria and hyperphenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med 303:1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Levy HL, Waisbren SE, Lobbregt D et al. (1996) Maternal non-phenylketonuric mild hyperphenylalaninemia. Eur J Pediatr 155[Suppl 1]: S20–25

    Article  Google Scholar 

Literatur

  • Blau N, Barnes I, Dhondt JL (1996) International database of tetrahydrobiopterin deficiencies. J Inherit Metab Dis 19: 8–14

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Michals K, Blau N, Rouse B (1989) Hyperphenylalaninemia due to inherited deficiencies of tetrahydrobiopterin. Adv Pediatr 36: 67–89

    CAS  PubMed  Google Scholar 

Literatur

  • Holme E, Lindstedt S (1995) Diagnosis and management of tyrosinemia type I. Curr Opin Pediatr 7: 726–732

    CAS  PubMed  Google Scholar 

  • Lindstedt S, Holme E, Lock EA et al. (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340(8823): 813–817

    Article  CAS  PubMed  Google Scholar 

Literatur

  • Goldsmith LA, Kang E, Bienfang DC et al. (1973) Tyrosinemia with plantar and palmar keratosis and keratitis. J Pediatr 83: 798–805

    Article  CAS  PubMed  Google Scholar 

  • Hervé F, Moreno JL, Ogier H et al. (1986) Kératite „inguérissable“ et hyperkératose palmo-plantaire chronique avec hypertyrosinémie. Guerison par un regime pauvre en tyrosine. Tyrosinémie de type II. Arch Fr Pediatr 43:19–22

    Google Scholar 

Literatur

  • O’Brien WM, Du BN la, Bunim JJ (1963) Biochemical, pathological and clinical aspects of alcaptonuria, ochronosis and ochronotic arthropathy. Am J Med 34: 813–838

    Article  Google Scholar 

  • Hazleman BL, Adebajo AO (1993) Alcaptonuria. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Wiley-Liss, New York, pp 591–602

    Google Scholar 

Literatur

  • Chuang DT, Shih VE (2001) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1971–2005

    Google Scholar 

  • Morton DH, Strauss KA, Robinson DL et al. (2002) Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics 109: 999–1008

    Article  PubMed  Google Scholar 

Literatur

  • Rinaldo P, Tortorelli S, Matern D (2004) Recent developments and new applications of tandem mass spectrometry in newborn screening. Curr Opin Pediatr 16: 427–433

    Article  PubMed  Google Scholar 

  • Schulze A, Lindner M, Kohlmuller D et al. (2003) Expanded newborn screening for inborn errors of metabolism by electrospray ionizationtandem mass spectrometry: results, outcome, and implications. Pediatrics 111: 1399–1406

    Article  PubMed  Google Scholar 

Literatur

  • Dantas MF, Suormala T, Randolph A et al. (2005) 3-Methylcrotonyl-CoA carboxylase deficiency: mutation analysis in 28 probands, 9 symptomatic and 19 detected by newborn screening. Hum Mutat 26:164

    Article  PubMed  Google Scholar 

Literatur

  • Perez-Cerda C, Garcia-Villoria J, Ofman R et al. (2005) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency: an X-linked inborn error of isoleucine metabolism that may mimic a mitochondrial disease. Pediatr Res 58: 488–491

    Article  PubMed  Google Scholar 

Literatur

  • Lehnert W, Sperl W, Suormala T, Baumgartner ER (1994) Propionic acidemia: clinical, biochemical and therapeutic aspects. Eur J Pediatr 153[Suppl l]:S68–80

    Article  Google Scholar 

  • Sass JO, Hofmann M, Skladal D et al. (2004) Propionic acidemia revisited: a workshop report. Clin Pediatr 43: 837–843

    Article  CAS  Google Scholar 

  • Surtees RA, Matthews EE, Leonard JV (1992) Neurologic outcome of propionic acidemia. Pediatr Neurol 8: 333–337

    Article  CAS  PubMed  Google Scholar 

Literatur

  • Baumgartner ER, Viardot C (1995) Long-term follow-up of 77 patients with isolated methylmalonic acidemia. J Inherit Metab Dis 18:138–142

    Article  Google Scholar 

  • Fernandes J, Saudubray JM, Berghe G van den (eds) (2000) Inborn metabolic diseases, 3rd edn. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Leonard JV (1995) The management and outcome of propionic and methylmalonic acidemia. J Inherit Metab Dis 18:430–434

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides P, Leonard J, Surtees R (1998) Neurological outcome of methylmalonic acidaemia. Arch Dis Child 78: 508–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Literatur

  • Fernades J, Saudubray JM, Berghe G van den (eds) (1995) Inborn metabolic diseases. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Fernades J, Saudubray JM, Berghe G van den (eds) (2000) Inborn metabolic diseases, 3rd edn. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Ogier de Baulny H, Gerard M, Saudubray JM, Zittoun J (1998) Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr l57[Suppl 2]:S77–83

    Article  Google Scholar 

  • Rosenblatt DS (2000) Disorders of cobalamin and folate transport and metabolism. In: Fernades J, Saudubray JM, Berghe G van den (eds) Inborn metabolic diseases, 3rd edn. Springer, Berlin Heidelberg New York Tokyo, pp 284–298

    Chapter  Google Scholar 

Literatur

  • Baumgartner R, Suormala T (2000) Biotin-responsive multiple carboxylase deficiency. In: Fernandes J, Saudubray JM, Berghe G van den (eds) Inborn metabolic diseases, 3rd edn. Springer, Berlin Heidelberg New York Tokyo, pp 277–282

    Google Scholar 

  • Moslinger D, Stockler-Ipsiroglu S, Scheibenreiter S et al. (2001) Clinical and neuropsychological outcome in 33 patients with biotinidase deficiency ascertained by nationwide newborn screening and family studies in Austria. Eur J Pediatr 160: 277–282

    Article  CAS  PubMed  Google Scholar 

Literatur

  • Fernandes J, Saudubray JM, Berghe G van den (eds) (2000) Inborn metabolic diseases, 3rd edn. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hoffmann GF, Athanassopoulos S, Burlina AB et al.(1996) Clinical course, early diagnosis, treatment, and prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics 27:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kolker S, Burgard P, Okun JG et al. (2004) Looking forward-An evidencebased approach to glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27: 921–926

    Article  CAS  PubMed  Google Scholar 

  • Kölker S, Greenberg CR, Lindner M et al. (2004) Emergency treatment in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27: 893–902

    Article  PubMed  Google Scholar 

Literatur

  • Topcu M, Aydin OF, Yalcinkaya C et al. (2005) L-2-hydroxyglutaric aciduria: a report of 29 patients. Turk J Pediatr 47:1–7

    PubMed  Google Scholar 

Literatur

  • Struys EA, Salomons GS, Achouri Y et al. (2005) Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. Am J Hum Genet 76: 358–360

    Article  CAS  PubMed  Google Scholar 

Literatur

  • Dinopoulos A, Matsubara Y, Kure S (2005) Atypical variants of nonketotic hyperglycinemia. Mol Genet Metab 86: 61–69

    Article  CAS  PubMed  Google Scholar 

  • Hoover-Fong JE, Shah S, Hove JL van et al. (2004) Natural history of nonketotic hyperglycinemia in 65 patients. Neurology 63:1847–1853

    Article  CAS  PubMed  Google Scholar 

  • Tada K (2000) Nonketotic hyperglycinemia. In: Fernandes J, Saudubray JM, Berghe G van den (eds) Inborn metabolic diseases, 3rd edn. Springer, Berlin Heidelberg New York Tokyo, pp 254–258

    Chapter  Google Scholar 

Literatur

  • D’Angelo A, Mazzola G, Fermo I (2003) Gene-gene and gene-environment interactions in mild hyperhomocysteinemia. Pathophysiol Haemost Thromb33: 337–341

    Article  PubMed  Google Scholar 

  • Fowler B (1997) Disorders of homocysteine metabolism. J Inherit Metab Dis 20: 270–285

    Article  CAS  PubMed  Google Scholar 

  • Fowler B (2005) Homocysteine: overview of biochemistry molecular biology and role in disease processes. Semin Vasc Med 5: 77–86

    Article  PubMed  Google Scholar 

Literatur

  • McInnes RR, Arshinoff SA, Bell L et al. (1981) Hyperornithinaemia and gyrate atrophy of the retina: improvement of vision during treatment with a low-arginine diet. Lancet 1: 513–516

    Article  CAS  PubMed  Google Scholar 

  • Shih VE (1995) Ornithine. In: Fernandes J, Saudubray JM, Berghe G van den (eds) Inborn metabolic diseases, 2nd edn. Springer, Berlin Heidelberg New York Tokyo, pp 183–190

    Chapter  Google Scholar 

Literatur

  • Fink JK, Brouwers P, Barton N et al. (1989) Neurologic complications in long-standing nephropathic cystinosis. Arch Neurol 46: 543–548

    Article  CAS  PubMed  Google Scholar 

  • Gahl WA, Dalakas MC, Charnas L et al. (1988) Myopathy and cystine storage in muscles in a patient with nephropathic cystinosis. N Engl J Med 319: 1461–1464

    Article  CAS  PubMed  Google Scholar 

  • Markello TC, Bernardini IM, Gahl WA (1993) Improved renal function in children with cystinosis treated with cysteamine. N Engl J Med 328: 1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Schneider JA, Clark KF, Greene AA et al. (1995) Recent advances in the treatment of cystinosis. J Inherit Metab Dis 18: 387–397

    Article  CAS  PubMed  Google Scholar 

  • Town M, Jean G, Cherqui S et al. (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18: 319–324

    Article  CAS  PubMed  Google Scholar 

Literatur

  • Palacin M, Goodyer P, Nunes V, Gasparini P (2001) Cystinuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw Hill, New York, pp 4909–4932

    Google Scholar 

Literatur

  • Johnson JL, Duvan M (2001) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw Hill, New York, pp 3163–3180

    Google Scholar 

Literatur

  • Levy HL (2001) Hartnup disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw Hill, New York, pp 4957–4970

    Google Scholar 

Literatur

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Harms, E., Wendel, U. (2007). Störungen des Stoffwechsels von Aminosäuren und organischen Säuren. In: Lentze, M.J., Schulte, F.J., Schaub, J., Spranger, J. (eds) Pädiatrie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76460-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76460-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71895-6

  • Online ISBN: 978-3-540-76460-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics