Efficient Texture Representation Using Multi-scale Regions

  • Horst Wildenauer
  • Branislav Mičušík
  • Markus Vincze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4843)


This paper introduces an efficient way of representing textures using connected regions which are formed by coherent multi-scale over-segmentations. We show that the recently introduced covariance-based similarity measure, initially applied on rectangular windows, can be used with our newly devised, irregular structure-coherent patches; increasing the discriminative power and consistency of the texture representation. Furthermore, by treating texture in multiple scales, we allow for an implicit encoding of the spatial and statistical texture properties which are persistent across scale. The meaningfulness and efficiency of the covariance based texture representation is verified utilizing a simple binary segmentation method based on min-cut. Our experiments show that the proposed method, despite the low dimensional representation in use, is able to effectively discriminate textures and that its performance compares favorably with the state of the art.


Image Segmentation Covariance Matrice Texture Representation Rectangular Window Smoothness Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. IJCV 43(1), 7–27 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Mičušík, B., Pajdla, T.: Multi-label image segmentation via max-sum solver. In: Proc. CVPR (2007)Google Scholar
  3. 3.
    Tuzel, O., Porikli, F., Meer, P.: Region covariance: A fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Rother, C., Kolmogorov, V., Blake, A.: ”grabcut”: interactive foreground extraction using iterated graph cuts. In: Proc. ACM SIGGRAPH, pp. 309–314. ACM Press, New York (2004)Google Scholar
  5. 5.
    Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Probabilistic fusion of stereo with color and contrast for bi-layer segmentation. PAMI 28(9), 1480–1492 (2006)Google Scholar
  6. 6.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proc. ICCV, pp. 105–112 (2001)Google Scholar
  7. 7.
    Hadjidemetriou, E., Grossberg, M., Nayar, K.S.: Multiresolution histograms and their use for recognition. PAMI 26(7), 831–847 (2004)Google Scholar
  8. 8.
    Turek, W., Freedman, D.: Multiscale modeling and constraints for max-flow/min-cut problems in computer vision. In: Proc. CVPR Workshop, vol. 180 (2006)Google Scholar
  9. 9.
    Förstner, W., Moonen, B.: A metric for covariance matrices. Technical report, Dpt. of Geodesy and Geoinformatics, Stuttgart University (1999)Google Scholar
  10. 10.
    Ren, X., Malik, J.: Learning a classification model for segmentation (2003)Google Scholar
  11. 11.
    Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)CrossRefGoogle Scholar
  12. 12.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26(9), 1124–1137 (2004)Google Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Lindeberg, T.: Scale-Space Theory in Computer Vison. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  15. 15.
    Deng, H., Zhang, W., Diettrich, T., Shapiro, L.: Principal curvature-based region detector for object recognition. In: Proc. CVPR (2007)Google Scholar
  16. 16.
    Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. International Journal of Computer Vision 66(1), 41–66 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Horst Wildenauer
    • 1
  • Branislav Mičušík
    • 1
    • 2
  • Markus Vincze
    • 1
  1. 1.Automation and Control Institute 
  2. 2.Institute of Computer Aided Automation, PRIP Group, Vienna University of TechnologyAustria

Personalised recommendations