Skip to main content

Efficient Texture Representation Using Multi-scale Regions

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4843))

Included in the following conference series:

Abstract

This paper introduces an efficient way of representing textures using connected regions which are formed by coherent multi-scale over-segmentations. We show that the recently introduced covariance-based similarity measure, initially applied on rectangular windows, can be used with our newly devised, irregular structure-coherent patches; increasing the discriminative power and consistency of the texture representation. Furthermore, by treating texture in multiple scales, we allow for an implicit encoding of the spatial and statistical texture properties which are persistent across scale. The meaningfulness and efficiency of the covariance based texture representation is verified utilizing a simple binary segmentation method based on min-cut. Our experiments show that the proposed method, despite the low dimensional representation in use, is able to effectively discriminate textures and that its performance compares favorably with the state of the art.

The research has been supported by the Austrian Science Foundation (FWF) under the grant S9101, and the European Union projects MOVEMENT (IST-2003-511670), Robots@home (IST-045350), and MUSCLE (FP6-507752).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. IJCV 43(1), 7–27 (2001)

    Article  MATH  Google Scholar 

  2. Mičušík, B., Pajdla, T.: Multi-label image segmentation via max-sum solver. In: Proc. CVPR (2007)

    Google Scholar 

  3. Tuzel, O., Porikli, F., Meer, P.: Region covariance: A fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Rother, C., Kolmogorov, V., Blake, A.: ”grabcut”: interactive foreground extraction using iterated graph cuts. In: Proc. ACM SIGGRAPH, pp. 309–314. ACM Press, New York (2004)

    Google Scholar 

  5. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Probabilistic fusion of stereo with color and contrast for bi-layer segmentation. PAMI 28(9), 1480–1492 (2006)

    Google Scholar 

  6. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proc. ICCV, pp. 105–112 (2001)

    Google Scholar 

  7. Hadjidemetriou, E., Grossberg, M., Nayar, K.S.: Multiresolution histograms and their use for recognition. PAMI 26(7), 831–847 (2004)

    Google Scholar 

  8. Turek, W., Freedman, D.: Multiscale modeling and constraints for max-flow/min-cut problems in computer vision. In: Proc. CVPR Workshop, vol. 180 (2006)

    Google Scholar 

  9. Förstner, W., Moonen, B.: A metric for covariance matrices. Technical report, Dpt. of Geodesy and Geoinformatics, Stuttgart University (1999)

    Google Scholar 

  10. Ren, X., Malik, J.: Learning a classification model for segmentation (2003)

    Google Scholar 

  11. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)

    Article  Google Scholar 

  12. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26(9), 1124–1137 (2004)

    Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Lindeberg, T.: Scale-Space Theory in Computer Vison. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  15. Deng, H., Zhang, W., Diettrich, T., Shapiro, L.: Principal curvature-based region detector for object recognition. In: Proc. CVPR (2007)

    Google Scholar 

  16. Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. International Journal of Computer Vision 66(1), 41–66 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wildenauer, H., Mičušík, B., Vincze, M. (2007). Efficient Texture Representation Using Multi-scale Regions. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76386-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76385-7

  • Online ISBN: 978-3-540-76386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics