Advertisement

Machine Vision in Early Days: Japan’s Pioneering Contributions

  • Masakazu Ejiri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4843)

Abstract

The history of machine vision started in the mid-1960s by the efforts of Japanese industry researchers. A variety of prominent vision-based systems was made possible by creating and evolving real-time image processing techniques, and was applied to factory automation, office automation, and even to social automation during the 1970-2000 period. In this article, these historical attempts are briefly explained to promote understanding of the pioneering efforts that opened the door and formed the bases of today’s computer vision research.

Keywords

Factory automation office automation social automation real-time image processing video image analysis robotics assembly inspection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ejiri, M., Miyatake, T., Sako, H., Nagasaka, A., Nagaya, S.: Evolution of real-time image processing in practical applications. In: Proc. IAPR MVA, Tokyo, pp. 177–186 (2000)Google Scholar
  2. 2.
    Ejiri, M., Uno, T., Yoda, H., Goto, T., Takeyasu, K.: A prototype intelligent robot that assembles objects from plan drawings. IEEE Trans. Comput. C-21(2), 161–170 (1972)CrossRefGoogle Scholar
  3. 3.
    Uno, T., Ejiri, M., Tokunaga, T.: A method of real-time recognition of moving objects and its application. Pattern Recognition 8, 201–208 (1976)CrossRefGoogle Scholar
  4. 4.
    Ejiri, M., Uno, T., Mese, M., Ikeda, S.: A process for detecting defects in complicated patterns, Comp. Graphics & Image Processing 2, 326–339 (1973)CrossRefGoogle Scholar
  5. 5.
    Kashioka, S., Ejiri, M., Sakamoto, Y.: A transistor wire-bonding system utilizing multiple local pattern matching techniques. IEEE Trans. Syst. Man & Cybern. SMC-6(8), 562–570 (1976)CrossRefGoogle Scholar
  6. 6.
    Ejiri, M.: Machine vision: A practical technology for advanced image processing. Gordon & Breach Sci. Pub, New York (1989)Google Scholar
  7. 7.
    Ejiri, M.: Recent image processing applications in industry. In: Proc. 9th SCIA, Uppsala, pp. 1–13 (1995)Google Scholar
  8. 8.
    Ejiri, M.: A key technology for flexible automation. In: Proc. of Japan-U.S.A. Symposium on Flexible Automation, Otsu, Japan, pp. 437–442 (1998)Google Scholar
  9. 9.
    Goto, N.: Toshiba Review 33, 6 (1978) (in Japanese)Google Scholar
  10. 10.
    Hara, Y., et al.: Automatic visual inspection of LSI photomasks. In: Proc. 5th ICPR (1980)Google Scholar
  11. 11.
    Haga, K., Nakamura, K., Sano, Y., Miyamori, N., Komuro, A.: Fuji Jiho 52(5), pp.294–298 (1979) (in Japanese)Google Scholar
  12. 12.
    Nakahara, S., Maeda, A., Nomura, Y.: Denshi Tokyo. IEEE Tokyo Section 18, 46–48 (1979)Google Scholar
  13. 13.
    Nomura, Y., Ito, S., Naemura, M.: Mitsubishi Denki Giho  53(12), 899–903 (1979) (in Japanese) Google Scholar
  14. 14.
    Maeda, A., Shibayama, J.: Pattern measurement, ITEJ Technical Report, 3, 32 (in Japanese) (1980)Google Scholar
  15. 15.
    Mori, K., Kidode, M., Shinoda, H., Asada, H.: Design of local parallel pattern processor for image processing. In: AFIP Conf. Proc., vol. 47, pp. 1025–1031 (1978)Google Scholar
  16. 16.
    Yoda, H., Ohuchi, Y., Taniguchi, Y., Ejiri, M.: An automatic wafer inspection system using pipelined image processing techniques, IEEE Trans. Pattern Analysis & Machine Intelligence. PAMI-10 1 (1988)Google Scholar
  17. 17.
    Ejiri, M., Yoda, H., Sakou, H.: Knowledge-directed inspection for complex multi-layered patterns. Machine Vision and Applications 2, 155–166 (1989)CrossRefGoogle Scholar
  18. 18.
    Fukushima, T., Kobayashi, Y., Hirasawa, K., Bandoh, T., Ejiri, M.: Architecture of image signal processor, Trans. IEICE, J-66C 12, 959–966 (1983)Google Scholar
  19. 19.
    Ejiri, M., Kakumoto, S., Miyatake, T., Shimada, S., Matsushima, H.: Automatic recognition of engineering drawings and maps. In: Proc. Int. Conf. on Pattern Recognition, Montreal, Canada, pp. 1296–1305 (1984)Google Scholar
  20. 20.
    Ejiri, M.: Knowledge-based approaches to practical image processing. In: Proc. MIV-89, Inst. Ind. Sci, Univ. of Tokyo, pp. 1–8. Tokyo (1989)Google Scholar
  21. 21.
    Yoda, H., Motoike, J., Ejiri, M., Yuminaka, T.: A measurement method of the number of passengers using real-time TV image processing techniques, Trans. IEICE, J-69D 11, 1679–1686 (1986)Google Scholar
  22. 22.
    Takahashi, K., Kitamura, T., Takatoo, M., Kobayashi, Y., Satoh, Y.: Traffic flow measuring system by image processing. In: Proc. IAPR MVA, Tokyo, pp. 245–248 (1996)Google Scholar
  23. 23.
    Yahagi, H., Baba, K., Kosaka, H., Hara, N.: Fish image monitoring system for detecting acute toxicants in water. In: Proc. 5th IAWPRC, pp. 609–616 (1990)Google Scholar
  24. 24.
    Ogawa, Y., Kakumoto, S., Iwamura, K.: Extracting regional features from aerial images based on 3-D map matching, Trans. IEICE, D-II 6, 1242–1250 (1998)Google Scholar
  25. 25.
    Nagaya, S., Miyatake, T., Fujita, T., Itoh, W., Ueda, H.: Moving object detection by time-correlation-based background judgment. In: Li, S., Teoh, E.K., Mital, D., Wang, H. (eds.) Recent Developments in Computer Vision. LNCS, vol. 1035, pp. 717–721. Springer, Heidelberg (1996)Google Scholar
  26. 26.
    Nagasaka, A., Miyatake, T., Ueda, H.: Video retrieval method using a sequence of representative images in a scene. In: Proc. IAPR MVA, Kawasaki, pp. 79–82 (1994)Google Scholar
  27. 27.
    Arai, K., Sakamoto, H.: Real-time animation of the upper half of the body using a facial expression tracker and an articulated input device, Research Report 96-CG-83, Information Processing Society of Japan (in Japanese), 96, 125, pp. 1–6 (1996)Google Scholar
  28. 28.
    Horry, Y., Anjyo, K., Arai, K.: Tour into the picture: Using a spidery mesh interface to make animation from a single image. In: Proc. ACM SIGGRAPH 1997, pp. 225–232 (1997)Google Scholar
  29. 29.
    Nagasaka, A., Miyatake, T.: A real-time video mosaics using luminance-projection correlation, Trans. IEICE, J82-D-II 10, 1572–1580 (1999)Google Scholar
  30. 30.
    Kamei, T., Shinbata, H., Uchida, K., Sato, A., Mizoguchi, M., Temma, T.: Automated fingerprint classification, IEICE Technical Report, Pattern Recognition and Understanding, 95(470), 17–24 (in Japanese) (1996)Google Scholar
  31. 31.
    Ui, H., Arima, Y., Murao, F., Komori, S., Kyuma, K.: An artificial retina chip with pixel-wise self-adjusting intensity response, ITE Technical Report, 23(30), pp.29–33 (in Japanese) (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Masakazu Ejiri
    • 1
  1. 1.R & D Consultant in Industrial Science, formerly at Central Research Laboratory, Hitachi, Ltd. 

Personalised recommendations