Advertisement

High Dynamic Range Scene Realization Using Two Complementary Images

  • Ming-Chian Sung
  • Te-Hsun Wang
  • Jenn-Jier James Lien
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4843)

Abstract

Many existing tone reproduction schemes are based on the use of a single high dynamic range (HDR) image and are therefore unable to accurately recover the local details and colors of the scene due to the limited information available. Accordingly, the current study develops a novel tone reproduction system which utilizes two images with different exposures to capture both the local details and color information of the low- and high-luminance regions of a scene. By computing the local region of each pixel, whose radius is determined via an iterative morphological erosion process, the proposed system implements a pixel-wise local tone mapping module which compresses the luminance range and enhances the local contrast in the low-exposure image. And a local color mapping module is applied to capture the precise color information from the high-exposure image. Subsequently, a fusion process is then performed to fuse the local tone mapping and color mapping results to generate highly realistic reproductions of HDR scenes.

Keywords

High dynamic range local tone mapping local color mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashikhmin, M.: A Tone Mapping Algorithm for High Contrast Images. 13th Eurographics, 145–156 (2002)Google Scholar
  2. 2.
    Blommaert, F.J.J., Martens, J.-B.: An Object-Oriented Model for Brightness perception. Spatial Vision 5(1), 15–41 (1990)Google Scholar
  3. 3.
    Chen, H.T., Liu, T.L., Fuh, C.S.: Tone Reproduction: A Perspective from luminance-Driven Perceptual Grouping. In: IJCV, vol. 65, pp. 73–96 (2005)Google Scholar
  4. 4.
    DiCarlo, J.M., Wandell, B.A.: Rendering High Dynamic Range Images. SPIE: Image Sensors 3965, 392–401 (2000)Google Scholar
  5. 5.
    Durand, F., Dorsey, J.: Fast Bilateral Filtering for the Display of High-Dynamic-Range Images. ACM SIGGRAPH, 257–266 (2002)Google Scholar
  6. 6.
    Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23(3), 673–678 (2004)CrossRefGoogle Scholar
  7. 7.
    Fattal, R., Lischinski, D., Werman, M.: Gradient Domain High Dynamic Range Compress. ACM SIGGRAPH, 249–256 (2002)Google Scholar
  8. 8.
    Goshtasby, A.: A High dynamic range reduction via maximization of image information, http://www.cs.wright.edu/~agoshtas/hdr.html
  9. 9.
    Holm, J.: Photographic Tone and Colour Reproduction Goals. CIE Expert Symposium ’96 on Colour Standard for Image Technology, 51–56 (1996)Google Scholar
  10. 10.
    Sun, J., Tang, J.: Bayesian Correction of Image Intensity with Spatial Consideration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 342–354. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans Graph. 23(3), 689–694 (2004)CrossRefGoogle Scholar
  12. 12.
    Petschnigg, G., Szeliski, R., Agrawala, M., Choen, M., Hoppe, H., Toyama, K.: Digitial photography with flash and no-flash image pairs. ACM Trans. Graph. 23(3), 664–672 (2004)CrossRefGoogle Scholar
  13. 13.
    Pardo, A., Sapiro, G.: Visualization of High Dynamic Range Images. IEEE Trans. on Image Proc. 12(6), 639–647 (2003)CrossRefGoogle Scholar
  14. 14.
    Ruderman, D.L., Chonin, T.W., Chiao, C.C: Statistic of cone responses to natural images: implications for visual coding. J. Optical Soc. Of America 15(8), 2036–2045 (1998)CrossRefGoogle Scholar
  15. 15.
    Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color Transfer between Images. IEEE CG&A 21, 34–41 (2001)Google Scholar
  16. 16.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic Tone Reproduction for Digital Images. ACM SIGGRAPH, 267–276 (2002)Google Scholar
  17. 17.
    Tai, Y.W., Jia, J., Tang, C.K.: Local Color Transfer via Probabilistic Segmentation by Expectation-Maximization. In: CVPR, vol. 1, pp. 747–754 (2005)Google Scholar
  18. 18.
    Tumblin, J., Turk, G.: LCIS: A Boundary Hierarchy for Detail-Preserving Contrast Reduction. ACM SIGGRAPH, 83–90 (1899)Google Scholar
  19. 19.
    Tumblin, J., Rushmeier, H.: Tone Reproduction for Computer Generated Images. IEEE CG&A 13(6), 42–48 (1993)Google Scholar
  20. 20.
    Ward, G.: A Contrast-Based Scale factor for Luminance Display. In: Heckbert, P. (ed.) Graphics Gems IV, pp. 415–421. Academic Press, Boston (1994)Google Scholar
  21. 21.
    Ward, G., Rushmeuer, H.E., Piatko, C.D.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Visualization and Computer Graphics 3(4), 291–306 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ming-Chian Sung
    • 1
  • Te-Hsun Wang
    • 1
  • Jenn-Jier James Lien
    • 1
  1. 1.Robotics Laboratory, Dept. of Computer Science and Information Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, TainanTaiwan

Personalised recommendations