Multiview Pedestrian Detection Based on Vector Boosting

  • Cong Hou
  • Haizhou Ai
  • Shihong Lao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4843)


In this paper, a multiview pedestrian detection method based on Vector Boosting algorithm is presented. The Extended Histograms of Oriented Gradients (EHOG) features are formed via dominant orientations in which gradient orientations are quantified into several angle scales that divide gradient orientation space into a number of dominant orientations. Blocks of combined rectangles with their dominant orientations constitute the feature pool. The Vector Boosting algorithm is used to learn a tree-structure detector for multiview pedestrian detection based on EHOG features. Further a detector pyramid framework over several pedestrian scales is proposed for better performance. Experimental results are reported to show its high performance.


Pedestrian detection Vector Boosting classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gavrila, D.M.: Sensor-based Pedestrian Protection. IEEE Intelligent Systems, 77–81 (2001)Google Scholar
  2. 2.
    Zhao, T.: Model-based Segmentation and Tracking of Multiple Humans in Complex Situations. In: CVPR 2003 (2003)Google Scholar
  3. 3.
    Ogale, N.A.: A survey of techniques for human detection from video, University of Maryland, Technical report (2005)Google Scholar
  4. 4.
    Munder, S., Gavrila, D.M.: An Experimental Study on Pedestrian Classification. TPAMI 28(11) (2006)Google Scholar
  5. 5.
    Wu, B., Nevatia, R.: Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors. In: Sebe, N., Lew, M.S., Huang, T.S. (eds.) Computer Vision in Human-Computer Interaction. LNCS, vol. 3766, Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Wu, B., Nevatia, R.: Tracking of Multiple, Partially Occluded Humans based on Static Body Part Detection. In: CVPR 2006 (2006)Google Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human detection. In: CVPR 2005 (2005)Google Scholar
  8. 8.
    Dalal, N., Triggs, B., Schmid, C.: Human Detection Using Oriented Histograms of Flow and Appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Zhu, Q., Avidan, S., et al.: Fast Human Detection Using a Cascade of Histograms of Oriented Gradients. In: CVPR 2006 (2006)Google Scholar
  10. 10.
    Schapire, R.E., Singer, Y.: Improved Boosting Algorithms Using Confidence-rated Predictions. Machine Learning 37, 297–336 (1999)zbMATHCrossRefGoogle Scholar
  11. 11.
    Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: CVPR 2001 (2001)Google Scholar
  12. 12.
    Viola, P., Jones, M., Snow, D.: Detecting Pedestrians Using Pattern of Motion and Appearance. In: ICCV 2003 (2003)Google Scholar
  13. 13.
    Zhao, L., Thorpe, C.E.: Stereo- and Neural Network-Based Pedestrian Detection. IEEE Trans. on Intelligent Transportation Systems 1(3) (2000)Google Scholar
  14. 14.
    Gavrila, D.M.: The Visual Analysis of Human Movement: A Survey. Computer Vision and Image Understanding 73(1), 82–98 (1999)zbMATHCrossRefGoogle Scholar
  15. 15.
    Wu, B., Ai, H., et al.: Fast rotation invariant multi-view face detection based on Real Adaboost. In: FG 2004 (2004)Google Scholar
  16. 16.
    Li, S.Z., Zhu, L., et al.: Statistical Learning of Multi-View Face Detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Jones, M., Viola, P.: Fast Multi-view Face Detection. MERL-TR2003-96 (July 2003)Google Scholar
  18. 18.
    Huang, C., Ai, H.Z., et al.: Vector Boosting for Rotation Invariant Multi-View Face Detection. In: Sebe, N., Lew, M.S., Huang, T.S. (eds.) Computer Vision in Human-Computer Interaction. LNCS, vol. 3766, Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Huang, C., Ai, H.Z., et al.: High-Performance Rotation Invariant Multiview Face Detection. TPAMI 29(4), 671–686 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Cong Hou
    • 1
  • Haizhou Ai
    • 1
  • Shihong Lao
    • 2
  1. 1.Computer Science and Technology Department, Tsinghua University, Beijing 100084China
  2. 2.Sensing and Control Technology Laboratory, Omron Corporation, Kyoto 619-0283Japan

Personalised recommendations