Object Detection Combining Recognition and Segmentation

  • Liming Wang
  • Jianbo Shi
  • Gang Song
  • I-fan Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4843)


We develop an object detection method combining top-down recognition with bottom-up image segmentation. There are two main steps in this method: a hypothesis generation step and a verification step. In the top-down hypothesis generation step, we design an improved Shape Context feature, which is more robust to object deformation and background clutter. The improved Shape Context is used to generate a set of hypotheses of object locations and figure-ground masks, which have high recall and low precision rate. In the verification step, we first compute a set of feasible segmentations that are consistent with top-down object hypotheses, then we propose a False Positive Pruning(FPP) procedure to prune out false positives. We exploit the fact that false positive regions typically do not align with any feasible image segmentation. Experiments show that this simple framework is capable of achieving both high recall and high precision with only a few positive training examples and that this method can be generalized to many object classes.


Object Detection Object Class Background Clutter Pedestrian Detection Mask Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)Google Scholar
  2. 2.
    Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Levin, A., Weiss, Y.: Learning to combine bottom-up and top-down segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: CVPR (2005)Google Scholar
  5. 5.
    Ferrari, V., Tuytelaars, T., Gool, L.J.V.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Kokkinos, I., Maragos, P., Yuille, A.L.: Bottom-up & top-down object detection using primal sketch features and graphical models. In: CVPR (2006)Google Scholar
  7. 7.
    Zhao, L., Davis, L.S.: Closely coupled object detection and segmentation. In: ICCV (2005)Google Scholar
  8. 8.
    Ren, X., Berg, A.C., Malik, J.: Recovering human body configurations using pairwise constraints between parts. In: Sebe, N., Lew, M.S., Huang, T.S. (eds.) Computer Vision in Human-Computer Interaction. LNCS, vol. 3766, Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Mori, G., Ren, X., Efros, A.A., Malik, J.: Recovering human body configurations: Combining segmentation and recognition. In: CVPR (2004)Google Scholar
  10. 10.
    Srinivasan, P., Shi, J.: Bottom-up recognition and parsing of the human body. In: CVPR (2007)Google Scholar
  11. 11.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. International Journal of Computer Vision 61(1) (2005)Google Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
  13. 13.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4) (2002)Google Scholar
  14. 14.
    Mori, G., Belongie, S.J., Malik, J.: Efficient shape matching using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell 27(11) (2005)Google Scholar
  15. 15.
    Thayananthan, A., Stenger, B., Torr, P.H.S., Cipolla, R.: Shape context and chamfer matching in cluttered scenes. In: CVPR (2003)Google Scholar
  16. 16.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: ICCV (1998)Google Scholar
  17. 17.
    Ramanan, D.: Using segmentation to verify object hypotheses. In: CVPR (2007)Google Scholar
  18. 18.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. In: CVPR (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Liming Wang
    • 1
  • Jianbo Shi
    • 2
  • Gang Song
    • 2
  • I-fan Shen
    • 1
  1. 1.Fudan University,Shanghai, 200433PRC
  2. 2.University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104 

Personalised recommendations