Calibrating Pan-Tilt Cameras with Telephoto Lenses

  • Xinyu Huang
  • Jizhou Gao
  • Ruigang Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4843)


Pan-tilt cameras are widely used in surveillance networks. These cameras are often equipped with telephoto lenses to capture objects at a distance. Such a camera makes full-metric calibration more difficult since the projection with a telephoto lens is close to orthographic. This paper discusses the problems caused by pan-tilt cameras with long focal length and presents a method to improve the calibration accuracy. Experiments show that our method reduces the re-projection errors by an order of magnitude compared to popular homography-based approaches.


Focal Length Camera Calibration Intrinsic Parameter Stereo Camera Telephoto Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daugman, J.: How Iris Recognition Works. In: ICIP (2002)Google Scholar
  2. 2.
    Guo, G., Jones, M., Beardsley, P.: A System for Automatic Iris Capturing. In: MERL TR2005-044 (2005)Google Scholar
  3. 3.
    Tsai, R.Y.: A Versatile Camera Calibration Technique for High-accuracy 3D Machine Vision Metrology Using Off-The-Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation 4(3), 323–344 (1987)CrossRefGoogle Scholar
  4. 4.
    Faugeras, O.: Three-Dimensional Computer Vision: a Geometric Viewpoint. MIT Press, Cambridge (1993)Google Scholar
  5. 5.
    Zhang, Z.: A Flexible New Technique for Camera Calibration. PAMI 22, 1330–1334 (2000)Google Scholar
  6. 6.
    Heikkila, J., Silven, O.: A Four-Step Camera Calibration Procedure with Implicit Image Correction. In: Proceedings of CVPR, pp. 1106–1112 (1997)Google Scholar
  7. 7.
    Pollefeys, M., Koch, R., Gool, L.V.: Self-Calibration and Metric Reconstruction in spite of Varying and Unknown Internal Camera Parameters. In: Proceedings of ICCV, pp. 90–95 (1997)Google Scholar
  8. 8.
    Pollefeys, M.: Self-Calibration and metric 3D reconstruction from uncalibrated image sequences. PhD thesis, K.U.Leuven (1999)Google Scholar
  9. 9.
    Mundy, J., Zisserman, A.: Geometric Invariance in Computer Vision. MIT Press, Cambridge (1992)Google Scholar
  10. 10.
    Aloimonos, J.Y.: Perspective Approximations. Image and Vision Computing 8, 177–192 (1990)CrossRefGoogle Scholar
  11. 11.
    Quan, L.: Self-Calibration of an Affine Camera from Multiple Views. International Journal of Computer Vision 19(1), 93–105 (1996)CrossRefGoogle Scholar
  12. 12.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  13. 13.
    Hartley, R.I.: Self-Calibration of Stationary Cameras. International Journal of Computer Vision 1(22), 5–23 (1997)CrossRefGoogle Scholar
  14. 14.
    de Agapito, L., Hayman, E., Reid, I.: Self-Calibration of a Rotating Camera with Varying Intrinsic Parameters. In: BMVC (1998)Google Scholar
  15. 15.
    Sinha, N., Pollefeys, M.: Towards Calibrating a Pan-Tilt-Zoom Camera Network. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Wang, L., Kang, S.B.: Error Analysis of Pure Rotation-Based Self-Calibration. PAMI 2(26), 275–280 (2004)Google Scholar
  17. 17.
    Davis, J., Chen, X.: Calibrating pan-tilt cameras in wide-area surveillance networks. In: Proceedings of ICCV, vol. 1, pp. 144–150 (2003)Google Scholar
  18. 18.
    Chen, X., Davis, J.: Wide Area Camera Calibration Using Virtual Calibration Objects. In: Proceedings of CVPR (2000)Google Scholar
  19. 19.
    Bouguet, J.Y.: Camera Calibration Toolbox for Matlab.
  20. 20.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 20, 91–110 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xinyu Huang
    • 1
  • Jizhou Gao
    • 1
  • Ruigang Yang
    • 1
  1. 1.Graphics and Vision Technology Lab (GRAVITY), Center for Visualization and Virtual Environments, University of KentuckyUSA

Personalised recommendations