Advertisement

Mirror Localization for Catadioptric Imaging System by Observing Parallel Light Pairs

  • Ryusuke Sagawa
  • Nobuya Aoki
  • Yasushi Yagi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4843)

Abstract

This paper describes a method of mirror localization to calibrate a catadioptric imaging system. While the calibration of a catadioptric system includes the estimation of various parameters, we focus on the localization of the mirror. The proposed method estimates the position of the mirror by observing pairs of parallel lights, which are projected from various directions. Although some earlier methods for calibrating catadioptric systems assume that the system is single viewpoint, which is a strong restriction on the position and shape of the mirror, our method does not restrict the position and shape of the mirror. Since the constraint used by the proposed method is that the relative angle of two parallel lights is constant with respect to the rigid transformation of the imaging system, we can omit both the translation and rotation between the camera and calibration objects from the parameters to be estimated. Therefore, the estimation of the mirror position by the proposed method is independent of the extrinsic parameters of a camera. We compute the error between the model of the mirror and the measurements, and then estimate the position of the mirror by minimizing this error. We test our method using both simulation and real experiments, and evaluate the accuracy thereof.

Keywords

IEEE Computer Society Mirror Surface Relative Angle Rigid Transformation Incident Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ishiguro, H., Yamamoto, M., Tsuji, S.: Omni-directional stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 257–262 (1992)CrossRefGoogle Scholar
  2. 2.
    Yamazawa, K., Yagi, Y., Yachida, M.: Obstacle detection with omnidirectional image sensor hyperomni vision. In: IEEE The International Conference on Robotics and Automation, Nagoya, pp. 1062–1067. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  3. 3.
    Nayar, S.: Catadioptric omnidirectional camera. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 482–488. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar
  4. 4.
    Gaspar, J., Decco, C., Okamoto Jr., J., Santos-Victor, J.: Constant resolution omnidirectional cameras. In: Proc. The Third Workshop on Omnidirectional Vision, pp. 27–34 (2002)Google Scholar
  5. 5.
    Hicks, R., Perline, R.: Equi-areal catadioptric sensors. In: Proc. The Third Workshop on Omnidirectional Vision, pp. 13–18 (2002)Google Scholar
  6. 6.
    Swaminathan, R., Nayar, S., Grossberg, M.: Designing Mirrors for Catadioptric Systems that Minimize Image Errors. In: Fifth Workshop on Omnidirectional Vision (2004)Google Scholar
  7. 7.
    Kondo, K., Yagi, Y., Yachida, M.: Non-isotropic omnidirectional imaging system for an autonomous mobile robot. In: Proc. 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  8. 8.
    Kojima, Y., Sagawa, R., Echigo, T., Yagi, Y.: Calibration and performance evaluation of omnidirectional sensor with compound spherical mirrors. In: Proc. The 6th Workshop on Omnidirectional Vision, Camera Networks and Non-classical cameras (2005)Google Scholar
  9. 9.
    Geyer, C., Daniilidis, K.: Paracatadioptric camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 687–695 (2002)CrossRefGoogle Scholar
  10. 10.
    Ying, X., Hu, Z.: Catadioptric camera calibration using geometric invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(10), 1260–1271 (2004)CrossRefGoogle Scholar
  11. 11.
    Mei, C., Rives, P.: Single view point omnidirectional camera calibration from planar grids. In: Proc. 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 3945–3950. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  12. 12.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  13. 13.
    Aliaga, D.: Accurate catadioptric calibration for realtime pose estimation of room-size environments. In: Proc. IEEE International Conference on Computer Vision, vol. 1, pp. 127–134. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  14. 14.
    Strelow, D., Mishler, J., Koes, D., Singh, S.: Precise omnidirectional camera calibration. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 689–694. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  15. 15.
    Micusík, B., Pajdla, T.: Autocalibration and 3d reconstruction with non-central catadioptric cameras. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington US, vol. 1, pp. 58–65. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  16. 16.
    Mashita, T., Iwai, Y., Yachida, M.: Calibration method for misaligned catadioptric camera. In: Proc. The Sixth Workshop on Omnidirectional Vision (2005)Google Scholar
  17. 17.
    Swaminathan, R., Grossberg, M., Nayar, S.: Caustics of catadioptric camera. In: Proc. IEEE International Conference on Computer Vision, vol. 2, pp. 2–9. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  18. 18.
    Grossberg, M., Nayar, S.: The raxel imaging model and ray-based calibration. International Journal on Computer Vision 61(2), 119–137 (2005)CrossRefGoogle Scholar
  19. 19.
    Sturm, P., Ramalingam, S.: A generic camera calibration concept. In: Proc. European Conference on Computer Vision, Prague, Czech, vol. 2, pp. 1–13 (2004)Google Scholar
  20. 20.
    Sagawa, R., Aoki, N., Mukaigawa, Y., Echigo, T., Yagi, Y.: Mirror localization for a catadioptric imaging system by projecting parallel lights. In: Proc. IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 3957–3962. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  21. 21.
    Caprile, B., Torre, V.: Using vanishing points for camera calibration. International Journal of Computer Vision 4(2), 127–140 (1990)CrossRefGoogle Scholar
  22. 22.
    Daniilidis, K., Ernst, J.: Active intrinsic calibration using vanishing points. Pattern Recognition Letters 17(11), 1179–1189 (1996)CrossRefGoogle Scholar
  23. 23.
    Guillemaut, J., Aguado, A., Illingworth, J.: Using points at infinity for parameter decoupling in camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 265–270 (2005)CrossRefGoogle Scholar
  24. 24.
    Mouaddib, E., Sagawa, R., Echigo, T., Yagi, Y.: Two or more mirrors for the omnidirectional stereovision? In: Proc. of The second IEEE-EURASIP International Symposium on Control, Communications, and Signal Processing, Marrakech, Morocco, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  25. 25.
    Sagawa, R., Kurita, N., Echigo, T., Yagi, Y.: Compound catadioptric stereo sensor for omnidirectional object detection. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, vol. 2, pp. 2612–2617 (2004)Google Scholar
  26. 26.
    Sagawa, R., Takatsuji, M., Echigo, T., Yagi, Y.: Calibration of lens distortion by structured-light scanning. In: Proc. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, pp. 1349–1354 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ryusuke Sagawa
    • 1
  • Nobuya Aoki
    • 1
  • Yasushi Yagi
    • 1
  1. 1.Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka, 567-0047Japan

Personalised recommendations